Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
Metal-Free Photocatalysis: Principle and Application in Energy Conversion and Purification
Current Issue
Volume 6, 2019
Issue 2 (April)
Pages: 14-20   |   Vol. 6, No. 2, April 2019   |   Follow on         
Paper in PDF Downloads: 20   Since Aug. 22, 2019 Views: 948   Since Aug. 22, 2019
Authors
[1]
Tawakalitu Ajibola, Department of Research and Development, Prototype Engineering Development Institute, (National Agency for Science and Engineering Infrastructure (NASENI)), Ilesa, Nigeria.
[2]
Lukuman Adegboye Salami, Department of Research and Development, Prototype Engineering Development Institute, (National Agency for Science and Engineering Infrastructure (NASENI)), Ilesa, Nigeria.
[3]
Alaba Elizabeth Akin-Johnson, Department of Research and Development, Prototype Engineering Development Institute, (National Agency for Science and Engineering Infrastructure (NASENI)), Ilesa, Nigeria.
[4]
Nafiu Olatunbosun Ashiru, Department of Research and Development, Prototype Engineering Development Institute, (National Agency for Science and Engineering Infrastructure (NASENI)), Ilesa, Nigeria.
[5]
Kunle Joseph Akinluwade, Department of Research and Development, Prototype Engineering Development Institute, (National Agency for Science and Engineering Infrastructure (NASENI)), Ilesa, Nigeria.
[6]
Eniafe Adepitan Arikawe, Department of Research and Development, Prototype Engineering Development Institute, (National Agency for Science and Engineering Infrastructure (NASENI)), Ilesa, Nigeria.
Abstract
In the recent research on photocatalysis, the conversion of green and sustainable technology has received increasing attention due to its potential to solve energy problem in an eco-friendly approach. The present review focuses on highly efficient and low-cost photocatalysts and various metal-free photocatalytic materials that have been designed and developed in recent years for energy conversion and environmental purification as a result of their unique properties and characteristics. This critical review presents the recent crucial applications and progress in metal-free photocatalysis, including Water splitting using few-layer C 2N, Renewable energy production using photofuelcells, Water purification using UV light, Deodorizing effect, Air purifying effect, Anti fogging and self-cleaning as well as Hazardous waste remediation. The review concludes with suggestions for future research topics. It is hoped that this review will facilitate deep-level investigation on the subject and provide new opportunities to develop metal-free photocatalytic materials with other important applications in the nearest future.
Keywords
Metal-free Photocatalysis, Photofuelcells (PFC), Environment, Pollutant, Green Energy
Reference
[1]
Wang X., D. Jing, M. Ni, Sci. Bull. 62 (2017) 597–598.
[2]
Chen X., S. Shen, L. Guo, S. S. Mao, Chem. Rev. 110 (2010) 6503–6570.
[3]
Maeda K., K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Nature 440 (2006) pp. 295–295.
[4]
Roy S. C, O. K. Varghese, M. Paulose, C. A. Grimes, ACS Nano 4 (2010) 1259–1278.
[5]
Chen X., S. Shen, L. Guo, S. S. Mao, Chem. Rev. 110 (2010) 6503–6570.
[6]
Yoon T. P, M. A. Ischay, J. Du, Nat. Chem. 2 (2010) 527–532.
[7]
Takanabe K, in: H. Tüysüz, C. K. Chan (Eds.), Solar Energy for Fuels, Springer International Publishing, 2016, pp. 73–103. Cham.
[8]
Takanabe K, in: H. Tüysüz, C. K. Chan (Eds.), Solar Energy for Fuels, Springer International Publishing, 2016, pp. 73–103. Cham.
[9]
Gong X.-Q., A. Selloni, M. Batzill, U. Diebold, Nat. Mater 5 (2006) 665–670.
[10]
Kudi, A and Miseki, Y (2009) Heterogenous Photocatalyst Materials for Water Splitting. Chemical Society Review, 38, 253–278.
[11]
Wang X., D. Jing, M. Ni, Sci. Bull. 62 (2017) 597–598.
[12]
Ong W.-J., L.-L. Tan, Y. H. Ng, S.-T. Yong, S.-P. Chai, Chem. Rev. 116 (2016) 7159–7329.
[13]
Nychas G. J. E., Skandamis P. N., Tassou C. C., Koutsoumanis K. P., 2008, Meat spoilage during distribution, Meat Science, 78, 77-89.
[14]
Wang X., K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nat. Mater 8 (2009) 76–80.
[15]
Wang X., D. Jing, M. Ni, Sci. Bull. 62 (2017) 597–598.
[16]
Ong W.-J., L.-L. Tan, Y. H. Ng, S.-T. Yong, S.-P. Chai, Chem. Rev. 116 (2016) 7159–7329.
[17]
Carp, O; Huisman, C. L.; Reller, A. Photoinduced reactivity of titanium dioxide. Prog. SolidState Chem. 2004, 32, 33–177.
[18]
Herrmann, J. M. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today 1999, 53, 115–129.
[19]
Dung, N. T.; Khoa, N. V.; Herrmann, J. M. Photocatalytic degradation of reactive dye RED-3BA in aqueous TiO2 suspension under UV-visible light. Int. J. Photoenergy 2005, 7, 11–15.
[20]
Zhao, J.; Yang, X. Photocatalytic oxidation for indoor air purification: a literature review. Build. Environ. 2003, 38, 645–654.
[21]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
[22]
Grimme, S. J. Comput. Chem. 2006, 27, 1787.
[23]
Zhang, K. Liao, J. Gu, Y. Yan, T. W. Shaw, E. Abelev, A. B. Bocarsly, Chem. Rev. 115 (2015) 12888–12935.
[24]
Zacharia, R.; Ulbricht, H.; Hertel, T. Phys. Rev. B - Condens. Matter Mater. Phys. 2004, 69, 1.
[25]
Heyd, J.; Scuseria, G. E. J. Chem. Phys. 2004, 121, 1187.
[26]
Sfaelou, S.; Antoniadou, M.; Trakakis, G.; Dracopoulos, V.; Tasis, D.; Parthenios, J.; Takanabe K., in: H. Tüysüz, C. K. Chan (Eds.), Solar Energy for Fuels, Springer International Publishing, 2016, pp. 73–103. Cham.
[27]
Balis, N.; Dracopoulos, V.; Antoniadou, M.; Lianos, P. One-Step Electrodeposition of Polypyrrole Applied as Oxygen Reduction Electrocatalystin Photoactivated Fuel Cells. Electrochim. Acta 2012, 70, 338–343.
[28]
Herrmann J. J, 2005. HeterogenousPhotocatalysis: State of and Present applications, in Topics in Catalysis, vol. 34, pp. 149-465.
[29]
Gaya U. I and Abdullah A. H, 2008. Heterogenous Photocatalytic degradation of organic contaminants over titaniumdioxide: a review of fundamentals, progress and problems, Journal of Photochemistry and Photobiology C. vol. 9, pp. 1-12.
[30]
Sobeleva N. M, Nosovich A. A., and Goncharuk V. V., 2009. The heterogenic Photocatalysis in water treatment Processes, Journal of water chemistry and Technology, vol. 29, pp. 72-89.
[31]
Nychas G. J. E., Skandamis P. N., Tassou C. C., Koutsoumanis K. P., 2008, Meat spoilage during distribution, Meat Science, 78, 77-89.
[32]
Ochiai T., Hayashi Y., Ito M., Nakata K., Murakami T., Morito Y., Fujishima A., 2012, An effective method for a separation of smoking area by using novel photocatalysis-plasma synergistic air-cleaner, Chemical engineering journal, 209, 313-317, DOI: 10.1016/j.cej.2012.07.139.
[33]
Hu, W.; Wu, X.; Li, Z.; Yang, J. Phys. Chem. Chem. Phys. 2013, 15, 5753.
[34]
Kato H., Asakura K., and Kudo A., J. Am. Chem. Soc., 125, 3082 (2003).
[35]
Asahi, R; Monkawa, T., Ohwaki, T; Aoki, K and Taga, Y. (2001). Visible- Light Photocatalysis in Nitrogen-Duped Titanium Oxide. Science Vol. 293, issue 5528 Pp. 269.
[36]
Obee T. N, R. T. Brown, Environ. TiO2 Photocatalysis for Indoor Air Applications: Effects of Humidity and Trace Contaminant Levels on the Oxidation Rates of Formaldehyde, Toluene, and 1,3-Butadiene Sci. Technol. 29 (1995) 1223–1231.
[37]
Frank, S. N and Bard, A. J. Heterpgenous Photocatalytic Oxidation of Cyanide ion in Aqeous solution at TiO2 Powder. Journal of the American Chemical Society, 99 (1), 303 – 304.
[38]
Pruden A. L., D. F. Ollis, Photoassisted heterogeneous catalysis: The degradation of trichloroethylene in water, J Catal, 82 (1983) 404–417.
[39]
O’Regan, B and Gratzel, M. (1991). A Low-Cost, High Efficiency Solar Cell Based on Dye- Sensitized Colloidal TiO2 Films. Nature, 353, 737–740.
[40]
Ana A., E. Almansa, A. Tejedor, A. R. Fernandez-Alba, S. Malato, and M. I. Maldonado. "Photocatalytic Pilot Scale Degradation Study of Pyrimethanil and of Its Main Degradation Products in Waters by Means of Solid-Phase Extraction Followed by Gas and Liquid Chromatography with Mass Spectrometry Detection." Environ. Sci. Technol., 34 (8) (2000) 1563-1571.
[41]
Zhao, J.; Yang, X. Photocatalytic oxidation for indoor air purification: a literature review. Build. Environ. 2003, 38, 645–654.
[42]
Takako A., M. Asami, and J. Amamiya (1999). "Application of Titanium Oxide Photocatalyst for Water Treatment." Kogyo Zairyo, 47 (6) (1999) 91-93.
[43]
Kawai T. and Sakata T., J. Chem. Soc., Chem. Commun., 15, 694 (1980).
[44]
White J. L., M. F. Baruch, J. E. Pander, Y. Hu, I. C. Fortmeyer, J. E., Chem. Rev. 115 (2015) 12888–12935.
[45]
Gao G, Y. Jiao, E. R. Waclawik, A. Du, J. Am. Chem. Soc. 138 (2016) 6292–6297.
[46]
Chang X., T. Wang, J. Gong, Energy & Environ. Sci. 9 (2016) 2177–2196.
[47]
Kresse, G. Phys. Rev. B 1996, 54, 11169.
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
CONTACT US
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
E-mail:
LET'S GET IN TOUCH
Name
E-mail
Subject
Message
SEND MASSAGE
Copyright © 2013-, Open Science Publishers - All Rights Reserved