Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
Photo-Conversion and Photo-Catalytic Efficiency of Hydrothermally Treated Anatase-TiO2 Films and Nanoparticles
Current Issue
Volume 2, 2015
Issue 1 (February)
Pages: 1-8   |   Vol. 2, No. 1, February 2015   |   Follow on         
Paper in PDF Downloads: 32   Since Aug. 28, 2015 Views: 1959   Since Aug. 28, 2015
Authors
[1]
Arūnas Jagminas, State Research Institute Center of Physical Sciences and Technology, Institute of Chemistry A. Gostauto 9, Vilnius, Lithuania.
[2]
Aldona Jagminiene, State Research Institute Center of Physical Sciences and Technology, Institute of Chemistry A. Gostauto 9, Vilnius, Lithuania.
[3]
Irena Savickaja, State Research Institute Center of Physical Sciences and Technology, Institute of Chemistry A. Gostauto 9, Vilnius, Lithuania.
[4]
Gediminas Niaura, State Research Institute Center of Physical Sciences and Technology, Institute of Chemistry A. Gostauto 9, Vilnius, Lithuania.
[5]
Vitalija Jasulaitiene, State Research Institute Center of Physical Sciences and Technology, Institute of Chemistry A. Gostauto 9, Vilnius, Lithuania.
Abstract
We describe the influence of hydrothermal and solvothermal treatment conditions of anatase TiO2 nanotube (Ntb) films and nanoparticles (Nps) on the UV light conversion and photo-catalytic efficiency. Our results indicated that additional hydrothermal and solvothermal treatment in the ethanol-water solution resulted in the remarkable increase of photo-conversion efficiency of calcined TiO2 Ntb films. Similarly, in case of crystalline TiO2 Nps, the additional hydrothermal and solvothermal treatments are beneficial for significant enhancement of their photo-catalytic activity. X-ray diffraction, Raman and X-ray photoelectron spectra as well as thermo-gravimetric plots implied that these improved performances can be mainly attributed to the binding of water molecules to the surface of TiO2 crystallites creating numerous attached OH¯ species capable of trapping the holes and reducing recombination of excited h+e- pairs.
Keywords
Photo-Conversion, Photo-Degradation, TiO2, Autoclaved Treatment, Characterization
Reference
[1]
Q. Wang, S. Ito, M. Grätzel, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, T. Borshoa, H. Imaic, “Effect of Energy Disorder in Interfacial Kinetics of Dye-Sensitized Solar Cells with Organic Hole Transport Material”, The Journal of Physical Chemistry B , vol. 110, pp. 19406-19409 , 2006.
[2]
B. O’Regan, J. Moser, M.A. Anderson, M. Grätzel, “Vectorial electron injection into transparent semiconductor membranes and electric field effects on the dynamics of light-induced charge separation”, The Journal of Physical Chemistry, vol. 94, pp. 8720-8726, 1990.
[3]
N. Murakami, Y. Kurihara, T. Tsubota, T. Ohno, “Shape-Controlled Anatase Titanium(IV) Oxide Particles Prepared by Hydrothermal Treatment of Peroxo Titanic Acid in the Presence of Polyvinyl Alcohol” The Journal of Physical Chemistry C , vol. 113, pp. 3062-3069, 2009.
[4]
S. Liu, J. Yu, M. Jaroniec, “Anatase TiO2 with dominant high-energy {001} facets: synthesis, properties and applications”, Chemistry of Materials, vol. 23, pp. 4085-4093, 2011.
[5]
I. Mora-Sero, F. Fabregat-Santiago, B. Denier, J. Bisquert, R. Tena-Zaera, J. Elias, C. Levy-Clement, Appl. Phys. Lett. 89 (2006) 203117.
[6]
H. J. Snaith, L. Schmidth-Mende, “Advances in Liquid-Electrolyte and Solid-State Dye-Sensitized Solar Cells”, Advanced Materials, vol. 19, pp. 3187-3191, 2007.
[7]
D. Grosso, G. Soler-Illia, F. Babonneau, C. Sanchez, P. A. Aelbouy, A. Brunet-Bruneau, A. R. Balkenende, “Highly organized mesoporous titania thin films showing mono-oriented 2D hexagonal channels”, Advanced Materials, vol. 13, pp. 1085-1090, 2001.
[8]
E. L. Crepaldi, G. Soller-Illia, D. Grosso, F. Cagnol, F. Ribot, C. Sanches, “Controled formation of highly organized mesoporous titania thin films:from mesostructured hybrids to mesoporous nano anatase TiO2”, Journal American Chemical Society, vol. 125, pp. 9770-9786, 2003.
[9]
S. Y. Choi, B. Lee, D. B. Carew, M. Mamak, F. C. Peiris, S. Speakman, N. Chopra, G. A. Ozin, “3D hexagonal (R-3m) mesostructured nanocrystalline titania thin films: synthesis and characterization”, Advanced Functional Materials”, vol.16, pp. 1731-173, 2006.
[10]
K. Shankar, G. K. Mor, H. E. Prakasam, S. Yoriya, M. Paulose, O. K. Varghese, C. A. Grimes, „Highly-ordered TiO2 nanotube arrays up to 220 m in length: use in water photoelectrolysis and dye-sensitized solar cells“, Nanotechnology, vol. 18, pp. 065707, 2007.
[11]
I. Mora-Sero, F. Fabregat-Santiago, B. Denier, J. Bisquert, R. Tena-Zaera, J. Elias, C. Levy-Clement, „Determination of carrier density of ZnO nanowires by electrochemical techniques“, Applied Physics Letters, vol. 89, no. 203117, 2006.
[12]
G. K. Mor, K. Shankar, O. K. Varghese, C. A. Grimes, “Photoelectrochemical properties of titania nanotubes“, Journal of Materials Research, vol. 19, pp. 2989-2994, 2004.
[13]
G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, “Enhanced Photocleavage of Water Using Titania Nanotube”, Nano Letters, vol. 5, pp.191-195, 2005.
[14]
C. Ruan, M. Paulose, O. K. Varghese, G. K. Mor, C. A. Grimes, “Fabrication of Highly Ordered TiO2 Nanotube Arrays Using an Organic Electrolyte”, The Journal of Physical Chemistry B, vol. 109, pp. 15754-15759, 2005.
[15]
A. Jagminas, G. Niaura, J. Kuzmarskytė-Jagminienė, V. Pakstas, “Study on Hydrothermal and Solvothermal Crystallization of Titania Nanotube Films”, Solid State Sciences, vol. 26, pp. 97-104, 2013.
[16]
P. V. Kamat, “Meeting the Cleen Energy Demand: Nanostructure Architectures for Solar Energy Conversion”, The Journal of Physical Chemistry C, vol. 111, pp. 2834-2837, 2007.
[17]
G. K. Boschloo, A. Goossens, J. Schoonman, “Photoelectrochemical Study of Thin Anatase TiO2 Films Prepared by Metallorganic Chemical Vapor Deposition”, Journal of Electrochemical Society, vol. 144, pp. 1311-1317, 1997.
[18]
X. Y. Yang, Z. Li, C. Sun, H. G. Yang, C. Li, “Hydrothermal Stability of {001} Faceted Anatase TiO2”, Chemistry of Materials, vol. 23, pp. 3486-3494, 2011.
[19]
R. Sanjines, H. Tang, H. Berger, F. Gozzo, G. Margaritondo, F. Levy, “Electronic Structure of Anatase TiO2 Oxide”, Journal Applied Physics, vol. pp. 2945-2952, 1994.
[20]
Y. Lai, L. Sun, Y. Chen, H. Zhuang, C. Lin, J. W. Chin, “Effect of the Structure of TiO2 Nanotube Array on Ti substrate on it’s Photocatalytic Activity’, Journal of Electrochemical Society, vol. 153, pp. D123-D127, 2006.
[21]
E. McCafferty, J. P. Winghtman, “Determination of the Concentration of Surface Hydroxyl Groups on Metal Oxide Films by Quantitative XPS Method”, Surface and Interface Analysis, vol. 26, pp. 549-564, 1998.
[22]
J. W. Orton, B. J. Goldsmith, J. A. Chapman, M. J. Powell, “The mechanism of photoconductivity in polycrystalline cadmium sulphide layers”, Journal of Applied Physics, vol. 53, pp. 1602, 1982.
[23]
M.V. Garcia-Cuenca, J.L. Morenza, J.N. Cordina, “Electrical conduction in polycrystalline CdS film. I. Theory”, Journal of Physics D: Applied Physics, vol. 20, pp. 951-957, 1987.
[24]
H. Kominami, T. Matsuura, K. Iwai, B. Ohtani, S. Nichimoto, Y. Kera, “Ultra-highly Active Titanium (IV) Oxide Photocatalyst Prepared by Hydrothermal Crystallization from Titanium (IV) Alkoxide in Organic Solvents”, Chemistry Letters, vol. 24, pp. 693-697, 1995.
[25]
S. Lakshmi, R. Renganathan, S. Fujita, “Study on TiO2-mediated photocatalytic degradation of methylene blue”, Journal of Photochemistry and Photobiology. A: Chemistry, vol. 88, pp. 163-167, 1995.
[26]
K. Nagaveni, G. Sivalingam, M.S. Hedge, G. Madras, “Solar photocatalytic degradation of dyes: high activity of combustion synthesized nano TiO2”, Applied. Catalysis B: Environmental, vol. 48, pp. 83-93, 2004.
[27]
J. Wang, X. Liu, R. Li, P. Qiao, L.Xiao, J. Fan, “TiO2 nanoparticles with increased surface hydroxyl groups and their improved photocatalytic activity”, Catalysis Communications, vol.19, pp. 96-99, 2012.
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
CONTACT US
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
E-mail:
LET'S GET IN TOUCH
Name
E-mail
Subject
Message
SEND MASSAGE
Copyright © 2013-, Open Science Publishers - All Rights Reserved