Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
CO Oxidation over Pd-Au Alloy Nanoparticle Doped Fibrous TiO2-Support Media
Current Issue
Volume 4, 2018
Issue 1 (January)
Pages: 12-23   |   Vol. 4, No. 1, January 2018   |   Follow on         
Paper in PDF Downloads: 40   Since Apr. 27, 2018 Views: 1230   Since Apr. 27, 2018
Hyeon U. Shin, Exhaust Emission Engineering Team, Hyundai Motor Company, Gyeonggi-do, South Korea.
Dinesh Lolla, Bioscience Division, Parker-Hannifin Corporation, Oxnard, USA.
Ahmed Abutaleb, Department of Chemical Engineering, Jazan University, Jazan, Saudi Arabia.
Sang Y. Hwang, Plant Engineering Center, Institute of Advance Engineering (IAE), Goan-ro, South Korea.
George G. Chase, Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, USA.
Pd-Au nano-sized alloy catalysts supported on Titania (TiO2) submicron-sized fibers were fabricated by calcination of electrospun polymer template fibers and hydrazine reduction. The morphologies, crystal structure, and textural properties (surface area, pore size, and volume) of Pd-Au/TiO2 fibers materials were evaluated with electron microscopy (SEM, TEM, and HRTEM), X-ray Diffraction (XRD), and Brunauer, Emmett and Teller (BET) nitrogen adsorption. For the alloy effect induced by the Pd-Au formation, the ensemble (geometric) effect and ligand effect (charge transfer) in Pd-Au nanoparticles were investigated with X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) to understand the formation of alloyed Pd-Au particles of different metal composition with consequent modification of their electronic and geometric properties. The catalytic activities of the materials were tested in carbon monoxide oxidation reaction using a plug-flow reactor. The results showed that the performance was optimal for a catalyst of composition Pd2Au1 molar ratio that was active at 125°C, which had higher dispersion of active components and better catalytic performance compared to monometallic particle Au/TiO2 and Pd/TiO2 fiber media. Moreover, the improved reaction activity of Pd2Au1/TiO2 fiber media was attributed to decrease in activation energy.
Nanofibers, Catalysis, Electrospinning, Conversion, Oxidation
Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T., Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications. The Journal of Physical Chemistry B 2005, 109, 13857-13870.
Crooks, R. M.; Zhao, M.; Sun, L.; Chechik, V.; Yeung, L. K., Dendrimer-Encapsulated Metal Nanoparticles: Synthesis, Characterization, and Applications to Catalysis. Accounts of Chemical Research 2001, 34, 181-190.
Wildgoose, G. G.; Banks, C. E.; Compton, R. G., Metal Nanoparticles and Related Materials Supported on Carbon Nanotubes: Methods and Applications. Small 2006, 2, 182-193.
Shin, H. U.; Lolla, D.; Nikolov, Z.; Chase, G. G., Pd–Au nanoparticles supported by TiO2 fibers for catalytic NO decomposition by CO. Journal of Industrial and Engineering Chemistry 2016, 33, 91-98.
Gao, F.; Goodman, D. W., Pd-Au Bimetallic Catalysts: Understanding Alloy Effects from Planar Models and (Supported) Nanoparticles. Chemical Society Reviews 2012, 41, 8009-8020.
Macleod, N.; Keel, J. M.; Lambert, R. M., The Effects of Ageing a Bimetallic Catalyst under Industrial Conditions: A Study of Fresh and Used Pd-Au-K/Silica Vinyl Acetate Synthesis Catalysts. Applied Catalysis A: General 2004, 261, 37-46.
Han, Y. F.; Wang, J. H.; Kumar, D.; Yan, Z.; Goodman, D. W., A Kinetic Study of Vinyl Acetate Synthesis over Pd-Based Catalysts: Kinetics of Vinyl Acetate Synthesis over Pd–Au/SiO2 and Pd/SiO2 Catalysts. Journal of Catalysis 2005, 232, 467-475.
Solsona, B. E.; Edwards, J. K.; Landon, P.; Carley, A. F.; Herzing, A.; Kiely, C. J.; Hutchings, G. J., Direct Synthesis of Hydrogen Peroxide from H2 and O2 Using Al2O3 Supported Au−Pd Catalysts. Chemistry of Materials 2006, 18, 2689-2695.
Edwards, J. K.; Solsona, B. E.; Landon, P.; Carley, A. F.; Herzing, A.; Kiely, C. J.; Hutchings, G. J., Direct Synthesis of Hydrogen Peroxide from H2 and O2 Using TiO2-Supported Au–Pd Catalysts. Journal of Catalysis 2005, 236, 69-79.
Nutt, M. O.; Heck, K. N.; Alvarez, P.; Wong, M. S., Improved Pd-on-Au Bimetallic Nanoparticle Catalysts for Aqueous-Phase Trichloroethene Hydrodechlorination. Applied Catalysis B: Environmental 2006, 69, 115-125.
Venezia, A. M.; La Parola, V.; Deganello, G.; Pawelec, B.; Fierro, J. L. G., Synergetic Effect of Gold in Au/Pd Catalysts During Hydrodesulfurization Reactions of Model Compounds. Journal of Catalysis 2003, 215, 317-325.
Yang, X.; Du, L.; Liao, S.; Li, Y.; Song, H., High-Performance Gold-Promoted Palladium Catalyst Towards the Hydrogenation of Phenol with Mesoporous Hollow Spheres as Support. Catalysis Communications 2012, 17, 29-33.
Baddeley, C. J.; Tikhov, M.; Hardacre, C.; Lomas, J. R.; Lambert, R. M., Ensemble Effects in the Coupling of Acetylene to Benzene on a Bimetallic Surface: A Study with Pd{111}/Au. The Journal of Physical Chemistry 1996, 100, 2189-2194.
Nishimura, S.; Yakita, Y.; Katayama, M.; Higashimine, K.; Ebitani, K., The Role of Negatively Charged Au States in Aerobic Oxidation of Alcohols over Hydrotalcite Supported Aupd Nanoclusters. Catalysis Science & Technology 2013, 3, 351-359.
Gao, F.; Wang, Y.; Goodman, D. W., Co Oxidation over Aupd (100) from Ultrahigh Vacuum to near-Atmospheric Pressures: The Critical Role of Contiguous Pd Atoms. Journal of the American Chemical Society 2009, 131, 5734-5735.
Yi, C. W.; Luo, K.; Wei, T.; Goodman, D. W., The Composition and Structure of Pd−Au Surfaces. The Journal of Physical Chemistry B 2005, 109, 18535-18540.
Chen, M.; Kumar, D.; Yi, C.-W.; Goodman, D. W., The Promotional Effect of Gold in Catalysis by Palladium-Gold. Science 2005, 310, 291-293.
Yang, X.; Chen, D.; Liao, S.; Song, H.; Li, Y.; Fu, Z.; Su, Y., High-Performance Pd–Au Bimetallic Catalyst with Mesoporous Silica Nanoparticles as Support and Its Catalysis of Cinnamaldehyde Hydrogenation. Journal of Catalysis 2012, 291, 36-43.
Samanta, A.; Rajesh, T.; Nandini Devi, R., Confined Space Synthesis of Fully Alloyed and Sinter-Resistant Aupd Nanoparticles Encapsulated in Porous Silica. Journal of Materials Chemistry A 2014, 2, 4398-4405.
Bernardotto, G.; Menegazzo, F.; Pinna, F.; Signoretto, M.; Cruciani, G.; Strukul, G., New Pd–Pt and Pd–Au Catalysts for an Efficient Synthesis of H2O2 from H2 and O2 under Very Mild Conditions. Applied Catalysis A: General 2009, 358, 129-135.
Goodman, D. W., “Catalytically Active Au on Titania:” yet Another Example of a Strong Metal Support Interaction (Smsi)?. Catal Lett 2005, 99, 1-4.
Menegazzo, F.; Signoretto, M.; Manzoli, M.; Boccuzzi, F.; Cruciani, G.; Pinna, F.; Strukul, G., Influence of the Preparation Method on the Morphological and Composition Properties of Pd–Au/ZrO2 Catalysts and Their Effect on the Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen. Journal of Catalysis 2009, 268, 122-130.
Moreau, F.; Bond, G. C., Preparation and Reactivation of Au/TiO2 Catalysts. Catalysis Today 2007, 122, 260-265.
Schubert, M. M.; Hackenberg, S.; van Veen, A. C.; Muhler, M.; Plzak, V.; Behm, R. J., Co Oxidation over Supported Gold Catalysts—“Inert” and “Active” Support Materials and Their Role for the Oxygen Supply During Reaction. Journal of Catalysis 2001, 197, 113-122.
Venezia, A. M.; Liotta, L. F.; Pantaleo, G.; La Parola, V.; Deganello, G.; Beck, A.; Koppány, Z.; Frey, K.; Horváth, D.; Guczi, L., Activity of SiO2 Supported Gold-Palladium Catalysts in CO Oxidation. Applied Catalysis A: General 2003, 251, 359-368.
Engel, T.; Ertl, G., Elementary Steps in the Catalytic Oxidation of Carbon Monoxide on Platinum Metals. In Advances in Catalysis, D. D. Eley, H. P.; Paul, B. W., Eds. Academic Press: 1979; Vol. Volume 28, pp 1-78.
Park, H.; Choi, W., Photoelectrochemical Investigation on Electron Transfer Mediating Behaviors of Polyoxometalate in Uv-Illuminated Suspensions of TiO2 and Pt/TiO2. The Journal of Physical Chemistry B 2003, 107, 3885-3890.
Lin, C.-H.; Chao, J.-H.; Liu, C.-H.; Chang, J.-C.; Wang, F.-C., Effect of Calcination Temperature on the Structure of a Pt/TiO2 (B) Nanofiber and Its Photocatalytic Activity in Generating H2. Langmuir 2008, 24, 9907-9915.
Formo, E.; Lee, E.; Campbell, D.; Xia, Y., Functionalization of Electrospun TiO2 Nanofibers with Pt Nanoparticles and Nanowires for Catalytic Applications. Nano Letters 2008, 8, 668-672.
Shin, H. U.; Abutaleb; A. Lolla, D.; Chase, G. G., Effect of Calcination Temperature on NO–CO Decomposition by Pd Catalyst Nanoparticles Supported on Alumina Nanofibers. Fibers 2017, 5, 22.
Park, S. J.; Bhargava, S.; Bender, E. T.; Chase, G. G.; Ramsier, R. D., Palladium Nanoparticles Supported by Alumina Nanofibers Synthesized by Electrospinning. Journal of Materials Research 2008, 23, 1193-1196.
Swaminathan, S.; Chase, G., Electrospinning of Metal Doped Alumina Nanofibers for Catalyst Applications. InTech China 2011.
Shahreen, L.; Chase, G. G.; Turinske, A. J.; Nelson, S. A.; Stojilovic, N., No Decomposition by Co over Pd Catalyst Supported on TiO2 Nanofibers. Chemical Engineering Journal 2013, 225, 340-349.
Lolla, D.; Gorse, J.; Kisielowski, C.; Miao, J.; Taylor, P. L.; Chase, G. G.; Reneker, D. D., Polyvinylidene fluoride molecules in nanofibers, imaged at atomic scale by aberration corrected electron microscopy. Nanoscale 2015, 8, 120-128.
Lolla, D.; Lolla, M.; Abutaleb, A.; Shin, H. U.; Reneker, D. D., Chase, G. G., Fabrication, Polarization of Electrospun Polyvinylidene Fluoride Electret Fibers and Effect on Capturing Nanoscale Solid Aerosols. Materials 2016, 9, 671.
Rajala, J. W.; Shin, H. U.; Lolla, D.; Chase, G. G., Core–Shell Electrospun Hollow Aluminum Oxide Ceramic Fibers. Fibers 2015, 3.
Abutaleb, A.; Lolla, D.; Aljuhani, A.; Shin, H. U.; Rajala, J. W.; Chase, G. G., Effects of Surfactants on the Morphology and Properties of Electrospun Polyetherimide. Fibers 2017, 5, 33.
Demir, M. M.; Gulgun, M. A.; Menceloglu, Y. Z.; Erman, B.; Abramchuk, S. S.; Makhaeva, E. E.; Khokhlov, A. R.; Matveeva, V. G.; Sulman, M. G., Palladium Nanoparticles by Electrospinning from Poly (Acrylonitrile-Co-Acrylic Acid)−PdCl2 Solutions. Relations between Preparation Conditions, Particle Size, and Catalytic Activity. Macromolecules 2004, 37, 1787-1792.
Wu, M.-L.; Chen, D.-H.; Huang, T.-C., Synthesis of Au/Pd Bimetallic Nanoparticles in Reverse Micelles. Langmuir 2001, 17, 3877-3883.
Hwang, S. Y.; Zhang, C.; Yurchekfrodl, E.; Peng, Z., Property of Pt–Ag Alloy Nanoparticle Catalysts in Carbon Monoxide Oxidation. The Journal of Physical Chemistry C 2014, 118, 28739-28745.
Wu, M.-L.; Chen, D.-H.; Huang, T.-C., Synthesis of Au/Pd Bimetallic Nanoparticles in Reverse Micelles. Langmuir 2001, 17, 3877-3883.
Babaei, A.; Jiang, S. P.; Li, J., Electrocatalytic Promotion of Palladium Nanoparticles on Hydrogen Oxidation on Ni/Gdc Anodes of Sofcs Via Spillover. Journal of The Electrochemical Society 2009, 156, B1022-B1029.
Voogt, E. H.; Mens, A. J. M.; Gijzeman, O. L. J.; Geus, J. W., Xps Analysis of Palladium Oxide Layers and Particles. Surface Science 1996, 350, 21-31.
Jovic, V.; Chen, W.-T.; Sun-Waterhouse, D.; Blackford, M. G.; Idriss, H.; Waterhouse, G. I. N., Effect of Gold Loading and TiO2 Support Composition on the Activity of Au/TiO2 Photocatalysts for H2 Production from Ethanol–Water Mixtures. Journal of Catalysis 2013, 305, 307-317.
Fuchs, P.; Marti, K.; Russi, S., Materials for Mass Standards: Long-Term Stability of PtIr and Au after Hydrogen and Oxygen Low-Pressure Plasma Cleaning. Metrologia 2012, 49, 615.
Venezia, A. M.; La Parola, V.; Deganello, G.; Pawelec, B.; Fierro, J. L. G., Synergetic Effect of Gold in Au/Pd Catalysts During Hydrodesulfurization Reactions of Model Compounds. Journal of Catalysis 2003, 215, 317-325.
Li, Z.; Gao, F.; Wang, Y.; Calaza, F.; Burkholder, L.; Tysoe, W. T., Formation and Characterization of Au/Pd Surface Alloys on Pd (1 1 1). Surface Science 2007, 601, 1898-1908.
Webb, P. O. C. M. I. C., Analytical Methods in Fine Particle Technology; Micromeritics Instrument Corp.: Norcross, Ga., 1997.
Menezes, W. G.; Zielasek, V.; Thiel, K.; Hartwig, A.; Bäumer, M., Effects of Particle Size, Composition, and Support on Catalytic Activity of Auag Nanoparticles Prepared in Reverse Block Copolymer Micelles as Nanoreactors. Journal of Catalysis 2013, 299, 222-231.
Kipnis, M., Gold in CO Oxidation and Prox: The Role of Reaction Exothermicity and Nanometer-Scale Particle Size. Applied Catalysis B: Environmental 2014, 152–153, 38-45.
Xu, J.; White, T.; Li, P.; He, C.; Yu, J.; Yuan, W.; Han, Y.-F., Biphasic Pd−Au Alloy Catalyst for Low-Temperature CO Oxidation. Journal of the American Chemical Society 2010, 132, 10398-10406.
Ward, T.; Delannoy, L.; Hahn, R.; Kendell, S.; Pursell, C. J.; Louis, C.; Chandler, B. D., Effects of Pd on Catalysis by Au: CO Adsorption, CO Oxidation, and Cyclohexene Hydrogenation by Supported Au and Pd–Au Catalysts. ACS Catalysis 2013, 3, 2644-2653.
Daniells, S. T.; Overweg, A. R.; Makkee, M.; Moulijn, J. A., The Mechanism of Low-Temperature Co Oxidation with Au/Fe2O3 Catalysts: A Combined Mössbauer, Ft-Ir, and Tap Reactor Study. Journal of Catalysis 2005, 230, 52-65.
Wei, T.; Wang, J.; Goodman, D. W., Characterization and Chemical Properties of Pd−Au Alloy Surfaces†. The Journal of Physical Chemistry C 2007, 111, 8781-8788.
Kugler, E. L.; Boudart, M., Ligand and Ensemble Effects in the Adsorption of Carbon Monoxide on Supported Palladium-Gold Alloys. Journal of Catalysis 1979, 59, 201-210.
Nascente, P. A. P.; de Castro, S. G. C.; Landers, R.; Kleiman, G. G., X-Ray Photoemission and Auger Energy Shifts in Some Gold-Palladium Alloys. Physical Review B 1991, 43, 4659-4666.
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
Copyright © 2013-, Open Science Publishers - All Rights Reserved