CO Oxidation over Pd-Au Alloy Nanoparticle Doped Fibrous TiO2-Support Media
Nanofibers, Catalysis, Electrospinning, Conversion, Oxidation
[1]
Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T., Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications. The Journal of Physical Chemistry B 2005, 109, 13857-13870.
[2]
Crooks, R. M.; Zhao, M.; Sun, L.; Chechik, V.; Yeung, L. K., Dendrimer-Encapsulated Metal Nanoparticles: Synthesis, Characterization, and Applications to Catalysis. Accounts of Chemical Research 2001, 34, 181-190.
[3]
Wildgoose, G. G.; Banks, C. E.; Compton, R. G., Metal Nanoparticles and Related Materials Supported on Carbon Nanotubes: Methods and Applications. Small 2006, 2, 182-193.
[4]
Shin, H. U.; Lolla, D.; Nikolov, Z.; Chase, G. G., Pd–Au nanoparticles supported by TiO2 fibers for catalytic NO decomposition by CO. Journal of Industrial and Engineering Chemistry 2016, 33, 91-98.
[5]
Gao, F.; Goodman, D. W., Pd-Au Bimetallic Catalysts: Understanding Alloy Effects from Planar Models and (Supported) Nanoparticles. Chemical Society Reviews 2012, 41, 8009-8020.
[6]
Macleod, N.; Keel, J. M.; Lambert, R. M., The Effects of Ageing a Bimetallic Catalyst under Industrial Conditions: A Study of Fresh and Used Pd-Au-K/Silica Vinyl Acetate Synthesis Catalysts. Applied Catalysis A: General 2004, 261, 37-46.
[7]
Han, Y. F.; Wang, J. H.; Kumar, D.; Yan, Z.; Goodman, D. W., A Kinetic Study of Vinyl Acetate Synthesis over Pd-Based Catalysts: Kinetics of Vinyl Acetate Synthesis over Pd–Au/SiO2 and Pd/SiO2 Catalysts. Journal of Catalysis 2005, 232, 467-475.
[8]
Solsona, B. E.; Edwards, J. K.; Landon, P.; Carley, A. F.; Herzing, A.; Kiely, C. J.; Hutchings, G. J., Direct Synthesis of Hydrogen Peroxide from H2 and O2 Using Al2O3 Supported Au−Pd Catalysts. Chemistry of Materials 2006, 18, 2689-2695.
[9]
Edwards, J. K.; Solsona, B. E.; Landon, P.; Carley, A. F.; Herzing, A.; Kiely, C. J.; Hutchings, G. J., Direct Synthesis of Hydrogen Peroxide from H2 and O2 Using TiO2-Supported Au–Pd Catalysts. Journal of Catalysis 2005, 236, 69-79.
[10]
Nutt, M. O.; Heck, K. N.; Alvarez, P.; Wong, M. S., Improved Pd-on-Au Bimetallic Nanoparticle Catalysts for Aqueous-Phase Trichloroethene Hydrodechlorination. Applied Catalysis B: Environmental 2006, 69, 115-125.
[11]
Venezia, A. M.; La Parola, V.; Deganello, G.; Pawelec, B.; Fierro, J. L. G., Synergetic Effect of Gold in Au/Pd Catalysts During Hydrodesulfurization Reactions of Model Compounds. Journal of Catalysis 2003, 215, 317-325.
[12]
Yang, X.; Du, L.; Liao, S.; Li, Y.; Song, H., High-Performance Gold-Promoted Palladium Catalyst Towards the Hydrogenation of Phenol with Mesoporous Hollow Spheres as Support. Catalysis Communications 2012, 17, 29-33.
[13]
Baddeley, C. J.; Tikhov, M.; Hardacre, C.; Lomas, J. R.; Lambert, R. M., Ensemble Effects in the Coupling of Acetylene to Benzene on a Bimetallic Surface: A Study with Pd{111}/Au. The Journal of Physical Chemistry 1996, 100, 2189-2194.
[14]
Nishimura, S.; Yakita, Y.; Katayama, M.; Higashimine, K.; Ebitani, K., The Role of Negatively Charged Au States in Aerobic Oxidation of Alcohols over Hydrotalcite Supported Aupd Nanoclusters. Catalysis Science & Technology 2013, 3, 351-359.
[15]
Gao, F.; Wang, Y.; Goodman, D. W., Co Oxidation over Aupd (100) from Ultrahigh Vacuum to near-Atmospheric Pressures: The Critical Role of Contiguous Pd Atoms. Journal of the American Chemical Society 2009, 131, 5734-5735.
[16]
Yi, C. W.; Luo, K.; Wei, T.; Goodman, D. W., The Composition and Structure of Pd−Au Surfaces. The Journal of Physical Chemistry B 2005, 109, 18535-18540.
[17]
Chen, M.; Kumar, D.; Yi, C.-W.; Goodman, D. W., The Promotional Effect of Gold in Catalysis by Palladium-Gold. Science 2005, 310, 291-293.
[18]
Yang, X.; Chen, D.; Liao, S.; Song, H.; Li, Y.; Fu, Z.; Su, Y., High-Performance Pd–Au Bimetallic Catalyst with Mesoporous Silica Nanoparticles as Support and Its Catalysis of Cinnamaldehyde Hydrogenation. Journal of Catalysis 2012, 291, 36-43.
[19]
Samanta, A.; Rajesh, T.; Nandini Devi, R., Confined Space Synthesis of Fully Alloyed and Sinter-Resistant Aupd Nanoparticles Encapsulated in Porous Silica. Journal of Materials Chemistry A 2014, 2, 4398-4405.
[20]
Bernardotto, G.; Menegazzo, F.; Pinna, F.; Signoretto, M.; Cruciani, G.; Strukul, G., New Pd–Pt and Pd–Au Catalysts for an Efficient Synthesis of H2O2 from H2 and O2 under Very Mild Conditions. Applied Catalysis A: General 2009, 358, 129-135.
[21]
Goodman, D. W., “Catalytically Active Au on Titania:” yet Another Example of a Strong Metal Support Interaction (Smsi)?. Catal Lett 2005, 99, 1-4.
[22]
Menegazzo, F.; Signoretto, M.; Manzoli, M.; Boccuzzi, F.; Cruciani, G.; Pinna, F.; Strukul, G., Influence of the Preparation Method on the Morphological and Composition Properties of Pd–Au/ZrO2 Catalysts and Their Effect on the Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen. Journal of Catalysis 2009, 268, 122-130.
[23]
Moreau, F.; Bond, G. C., Preparation and Reactivation of Au/TiO2 Catalysts. Catalysis Today 2007, 122, 260-265.
[24]
Schubert, M. M.; Hackenberg, S.; van Veen, A. C.; Muhler, M.; Plzak, V.; Behm, R. J., Co Oxidation over Supported Gold Catalysts—“Inert” and “Active” Support Materials and Their Role for the Oxygen Supply During Reaction. Journal of Catalysis 2001, 197, 113-122.
[25]
Venezia, A. M.; Liotta, L. F.; Pantaleo, G.; La Parola, V.; Deganello, G.; Beck, A.; Koppány, Z.; Frey, K.; Horváth, D.; Guczi, L., Activity of SiO2 Supported Gold-Palladium Catalysts in CO Oxidation. Applied Catalysis A: General 2003, 251, 359-368.
[26]
Engel, T.; Ertl, G., Elementary Steps in the Catalytic Oxidation of Carbon Monoxide on Platinum Metals. In Advances in Catalysis, D. D. Eley, H. P.; Paul, B. W., Eds. Academic Press: 1979; Vol. Volume 28, pp 1-78.
[27]
Park, H.; Choi, W., Photoelectrochemical Investigation on Electron Transfer Mediating Behaviors of Polyoxometalate in Uv-Illuminated Suspensions of TiO2 and Pt/TiO2. The Journal of Physical Chemistry B 2003, 107, 3885-3890.
[28]
Lin, C.-H.; Chao, J.-H.; Liu, C.-H.; Chang, J.-C.; Wang, F.-C., Effect of Calcination Temperature on the Structure of a Pt/TiO2 (B) Nanofiber and Its Photocatalytic Activity in Generating H2. Langmuir 2008, 24, 9907-9915.
[29]
Formo, E.; Lee, E.; Campbell, D.; Xia, Y., Functionalization of Electrospun TiO2 Nanofibers with Pt Nanoparticles and Nanowires for Catalytic Applications. Nano Letters 2008, 8, 668-672.
[30]
Shin, H. U.; Abutaleb; A. Lolla, D.; Chase, G. G., Effect of Calcination Temperature on NO–CO Decomposition by Pd Catalyst Nanoparticles Supported on Alumina Nanofibers. Fibers 2017, 5, 22.
[31]
Park, S. J.; Bhargava, S.; Bender, E. T.; Chase, G. G.; Ramsier, R. D., Palladium Nanoparticles Supported by Alumina Nanofibers Synthesized by Electrospinning. Journal of Materials Research 2008, 23, 1193-1196.
[32]
Swaminathan, S.; Chase, G., Electrospinning of Metal Doped Alumina Nanofibers for Catalyst Applications. InTech China 2011.
[33]
Shahreen, L.; Chase, G. G.; Turinske, A. J.; Nelson, S. A.; Stojilovic, N., No Decomposition by Co over Pd Catalyst Supported on TiO2 Nanofibers. Chemical Engineering Journal 2013, 225, 340-349.
[34]
Lolla, D.; Gorse, J.; Kisielowski, C.; Miao, J.; Taylor, P. L.; Chase, G. G.; Reneker, D. D., Polyvinylidene fluoride molecules in nanofibers, imaged at atomic scale by aberration corrected electron microscopy. Nanoscale 2015, 8, 120-128.
[35]
Lolla, D.; Lolla, M.; Abutaleb, A.; Shin, H. U.; Reneker, D. D., Chase, G. G., Fabrication, Polarization of Electrospun Polyvinylidene Fluoride Electret Fibers and Effect on Capturing Nanoscale Solid Aerosols. Materials 2016, 9, 671.
[36]
Rajala, J. W.; Shin, H. U.; Lolla, D.; Chase, G. G., Core–Shell Electrospun Hollow Aluminum Oxide Ceramic Fibers. Fibers 2015, 3.
[37]
Abutaleb, A.; Lolla, D.; Aljuhani, A.; Shin, H. U.; Rajala, J. W.; Chase, G. G., Effects of Surfactants on the Morphology and Properties of Electrospun Polyetherimide. Fibers 2017, 5, 33.
[38]
Demir, M. M.; Gulgun, M. A.; Menceloglu, Y. Z.; Erman, B.; Abramchuk, S. S.; Makhaeva, E. E.; Khokhlov, A. R.; Matveeva, V. G.; Sulman, M. G., Palladium Nanoparticles by Electrospinning from Poly (Acrylonitrile-Co-Acrylic Acid)−PdCl2 Solutions. Relations between Preparation Conditions, Particle Size, and Catalytic Activity. Macromolecules 2004, 37, 1787-1792.
[39]
Wu, M.-L.; Chen, D.-H.; Huang, T.-C., Synthesis of Au/Pd Bimetallic Nanoparticles in Reverse Micelles. Langmuir 2001, 17, 3877-3883.
[40]
Hwang, S. Y.; Zhang, C.; Yurchekfrodl, E.; Peng, Z., Property of Pt–Ag Alloy Nanoparticle Catalysts in Carbon Monoxide Oxidation. The Journal of Physical Chemistry C 2014, 118, 28739-28745.
[41]
Wu, M.-L.; Chen, D.-H.; Huang, T.-C., Synthesis of Au/Pd Bimetallic Nanoparticles in Reverse Micelles. Langmuir 2001, 17, 3877-3883.
[42]
Babaei, A.; Jiang, S. P.; Li, J., Electrocatalytic Promotion of Palladium Nanoparticles on Hydrogen Oxidation on Ni/Gdc Anodes of Sofcs Via Spillover. Journal of The Electrochemical Society 2009, 156, B1022-B1029.
[43]
Voogt, E. H.; Mens, A. J. M.; Gijzeman, O. L. J.; Geus, J. W., Xps Analysis of Palladium Oxide Layers and Particles. Surface Science 1996, 350, 21-31.
[44]
Jovic, V.; Chen, W.-T.; Sun-Waterhouse, D.; Blackford, M. G.; Idriss, H.; Waterhouse, G. I. N., Effect of Gold Loading and TiO2 Support Composition on the Activity of Au/TiO2 Photocatalysts for H2 Production from Ethanol–Water Mixtures. Journal of Catalysis 2013, 305, 307-317.
[45]
Fuchs, P.; Marti, K.; Russi, S., Materials for Mass Standards: Long-Term Stability of PtIr and Au after Hydrogen and Oxygen Low-Pressure Plasma Cleaning. Metrologia 2012, 49, 615.
[46]
Venezia, A. M.; La Parola, V.; Deganello, G.; Pawelec, B.; Fierro, J. L. G., Synergetic Effect of Gold in Au/Pd Catalysts During Hydrodesulfurization Reactions of Model Compounds. Journal of Catalysis 2003, 215, 317-325.
[47]
Li, Z.; Gao, F.; Wang, Y.; Calaza, F.; Burkholder, L.; Tysoe, W. T., Formation and Characterization of Au/Pd Surface Alloys on Pd (1 1 1). Surface Science 2007, 601, 1898-1908.
[48]
Webb, P. O. C. M. I. C., Analytical Methods in Fine Particle Technology; Micromeritics Instrument Corp.: Norcross, Ga., 1997.
[49]
Menezes, W. G.; Zielasek, V.; Thiel, K.; Hartwig, A.; Bäumer, M., Effects of Particle Size, Composition, and Support on Catalytic Activity of Auag Nanoparticles Prepared in Reverse Block Copolymer Micelles as Nanoreactors. Journal of Catalysis 2013, 299, 222-231.
[50]
Kipnis, M., Gold in CO Oxidation and Prox: The Role of Reaction Exothermicity and Nanometer-Scale Particle Size. Applied Catalysis B: Environmental 2014, 152–153, 38-45.
[51]
Xu, J.; White, T.; Li, P.; He, C.; Yu, J.; Yuan, W.; Han, Y.-F., Biphasic Pd−Au Alloy Catalyst for Low-Temperature CO Oxidation. Journal of the American Chemical Society 2010, 132, 10398-10406.
[52]
Ward, T.; Delannoy, L.; Hahn, R.; Kendell, S.; Pursell, C. J.; Louis, C.; Chandler, B. D., Effects of Pd on Catalysis by Au: CO Adsorption, CO Oxidation, and Cyclohexene Hydrogenation by Supported Au and Pd–Au Catalysts. ACS Catalysis 2013, 3, 2644-2653.
[53]
Daniells, S. T.; Overweg, A. R.; Makkee, M.; Moulijn, J. A., The Mechanism of Low-Temperature Co Oxidation with Au/Fe2O3 Catalysts: A Combined Mössbauer, Ft-Ir, and Tap Reactor Study. Journal of Catalysis 2005, 230, 52-65.
[54]
Wei, T.; Wang, J.; Goodman, D. W., Characterization and Chemical Properties of Pd−Au Alloy Surfaces†. The Journal of Physical Chemistry C 2007, 111, 8781-8788.
[55]
Kugler, E. L.; Boudart, M., Ligand and Ensemble Effects in the Adsorption of Carbon Monoxide on Supported Palladium-Gold Alloys. Journal of Catalysis 1979, 59, 201-210.
[56]
Nascente, P. A. P.; de Castro, S. G. C.; Landers, R.; Kleiman, G. G., X-Ray Photoemission and Auger Energy Shifts in Some Gold-Palladium Alloys. Physical Review B 1991, 43, 4659-4666.