[1]
Ahmet Cihangir, Elementary Mathematics Education Programme, Ahmet Kelesoglu Education Faculty, Necmettin Erbakan University, Konya, Turkey.
[2]
Hasan Şenay, Elementary Mathematics Education Programme, Faculty of Education, Mevlana University, Konya, Turkey.
In this study; where the variables x, y and z are integers, a and n positive integers, existence of x, y, z integer solutions’ for each positive n integers of x2+ay2 = zn Diophantine equation was shown by induction. Also change of z was analyzed according to the values which a will take and each situation was exemplified.
Exponential Diophantine Equations, Pythagorean Triangles, Higher Degree Equations
[1]
Mahler, K.; Zur Approximation Algebra is Cher Zahler I: Uber Den Gr¨ossten Primteiler Bin¨arer Formen. Math. Ann.1933; 107: 691–730.
[2]
Gel’fond, A. O.; Sur La Divisibilit´E De La Diff´erence Des Puissances De Deux Nombres Entiers Par Une Puissance D’un İd´Eal Premier. Mat. Sb. 1940; 7: 7–25.
[3]
Terai, N.; The Diophantine Equation ax+by=cz, Proc.Japan Acad. Ser.A Math. Sci. 1994; 70: 22–26.
[4]
Cao, Z. F.; A Note On The Diophantine Equation ax+by=cz. Acta Arith.1999; 91: 85–93.
[5]
Le, M. H.; On The Diophantine Equation ax+by=cz. J. Changchun Teachers College Ser. Nat. Sci. 1985; 2: 50–62 (in Chinese)
[6]
Terai, N.; The Diophantine Equation ax+by=cz. III, Proc. Japan Acad. Ser. A Math. Sci.1996; 72: 20–22.
[7]
Terai, N.; Applications Of A Lower Bound For Linear Forms In Two Logarithms To Exponential Diophantine Equations. Acta Arith.1999; 90: 17–35.
[8]
Dong, X. L., Cao, Z. F.; The Terai–Je´Smanowicz Conjecture Concerning The Equation ax+by=cz. Chinese Math. Ann. Ser. A 2000; 21(A): 709–714 (in Chinese)
[9]
Le, M. H.; A Conjecture Concerning the Pure Exponential Diophantine Equation . Acta Math. Sinica, English Series 2004; 21: 943–948.
[10]
Terai N.; The Diophantine Equation ax+by=cz II, Proc. Japan Acad. Math. Sci.1995; 71: 109–110.
[11]
Sierpinski W.; Elementary Theory of Numbers, A. Schinzel (Ed.) (second English edition), PWN – Polish Scientific Publishers, New York, 1988.
[12]
Cihangir A. ve Şenay H.; ap+bq=cr Diophantine Denkleminin Tamsayı Çözümleri Üzerine, S. Ü. Eğitim Fakültesi Dergisi (Fen Bil.) 1998; 7A: 77– 85.
[13]
Cihangir A. ve Şenay H.; ap+bq=cr Diophantine Denkleminin Tamsayı Çözümleri Üzerine II, S. Ü. Eğitim Fakültesi Fen Dergisi 2000; 8(1): 137–143.
[14]
Cihangir, A. and Şenay, H.; On the Integer Solutions of The Diophantine Equations x2+y2=z2 and xn+y2=z2, Jour. of. Math.& Comp.Sci (Math.Ser.) 2002;15(2):79–84.
[15]
Cihangir A; (1998), Pythagorean Üçlüleri Grubu ile z2-ay2=x2 Denkleminin Çözüm Üçlüleri Kümesinin Cebirsel Özellikleri ve xp+ay2=zq Diophantine Denkleminin Tamsayı Çözümleri Üzerine, Ph.D. Thesis, S.Ü. Fen Bilimleri Enstitüsü–Konya, Turkey.