Series Expansion for the Real Numbers to Degrees
[1]
Kolosov Petro, Odessa State Maritime Academy (Izmail Faculty), Marine Engineering Department, Izmail, Ukraine.
In this paper presented a method for series expansion for any real positive number x to power n, where n is integer value. Method is based on n-rank differences between nearest indexed numbers to power. When we try to present powers function as numerical series, the difference between start numbers should be constantly for each. Same distribution law is true for every positive real numbers, which as described.
[1]
Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 30–32, 1996.
[2]
Kiran Parulekar. Amazing Properties of Squares and Their Calculations. Kiran Anil Parulekar, 2012.
[3]
Bag, Amulya Kumar (1966). "Binomial theorem in ancient India". Indian J. History Sci 1 (1): 68–74.
[4]
Barth, Nils R. (November 2004). "Computing Cavalieri's Quadrature Formula by a Symmetry of the n-Cube". The American Mathematical Monthly (Mathematical Association of America) 111 (9): 811–813.
[5]
Graham, Ronald; Knuth, Donald; Patashnik, Oren (1994). "(5) Binomial Coefficients". Concrete Mathematics (2nd ed.). Addison Wesley. pp. 153–256.
[6]
Hardy, G. H.; Wright, E. M. (1980). "An Introduction to the Theory of Numbers" (Fifth ed.). Oxford: Oxford University Press. ISBN 978-0-19-853171-5.
[7]
Georg Cantor, 1874, "Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen", Journal für die Reine und Angewandte Mathematik, volume 77, pages 258–262.
[8]
Solomon Feferman, 1989, The Numbers Systems: Foundations of Algebra and Analysis, AMS Chelsea, ISBN 0-8218-2915-7.
[9]
Robert Katz, 1964, Axiomatic Analysis, D. C. Heath and Company.
[10]
Edmund Landau, 2001, ISBN 0-8218-2693-X, Foundations of Analysis, American Mathematical Society.
[11]
Howie, John M., Real Analysis, Springer, 2005, ISBN 1-85233-314-6.
[12]
Schumacher, Carol (1996), ChapterZero / Fundamental Notions of Abstract Mathematics, Addison-Wesley, ISBN 0-201-82653-4.