Treatment of Industrial Wastewater Containing Phenol Using the Electro-Fenton Technique in Gas Sparged Cell
[1]
A. Abdelaziz, Chemical Engineering Department, Alexandria University, Alexandria, Egypt.
[2]
A. A. Mubarak, Chemical Engineering Department, Alexandria University, Alexandria, Egypt.
[3]
S. A. Nosier, Chemical Engineering Department, Alexandria University, Alexandria, Egypt.
[4]
M. Hussien, Chemical Engineering Department, Alexandria University, Alexandria, Egypt.
The present study is concerned with evaluating the performance of Electro-Fenton process using iron electrodes as an alternative wastewater treatment technique. In this method, hydrogen peroxide is externally added into the system while a sacrificial iron anode is used as Fe+2 source so Fenton reaction was formed in the reactor. The batch reactor was stirred by introducing nitrogen gas through G4 type sintered glass and a synthetic solution of phenol was used to simulate wastewater. The effect of various process parameters such as: pH, gas superficial velocity, current density, H2O2 concentration, initial phenol concentration, and NaCl concentration on the electro-Fenton reaction was investigated to achieve maximum degradation efficiency. The batch experimental results revealed that the overall COD reduction reached 97% for initial phenol concentration 50 mg/l. The optimum pH, superficial gas velocity, current density was 3, 1.18 cm/s, 1.7 mA/cm2 and H2O2 concentration was 1500 mg/l, respectively. The kinetic study revealed that the rate of COD reduction followed a pseudo first order reaction. Energy consumption and iron electrode consumption were calculated per gram of COD removed.
Electro-Fenton, Phenol, Wastewater, Iron Electrode, Gas Sparged Cell
[1]
H. Tavallali and M. Cheraghi, “The Removal of Phenol From Environmental Wastewater Samples By Use of Modified Alumina-Coated Magnetite Nanoparticle Based On Sholid-Phase Extraction Method", Asian Journal of Biochemical and Pharmaceutical Research, Vol. 1, Issue 4, pp: 2231-2560, 2011.
[2]
B. C. Meikap and G. K. Rot, “Removal of phenolic compounds from industrial wastewater by semifluidized Bed Bio-Reactor" Journal of the 1PHE, India, Vol. 3, 1997.
[3]
G. Busca, S. Berardinelli, C. Resini, L. Arrighi, “Technologies for the removal of phenol from fluid streams: a short review of recent developments”, Journal of Hazard. Material, 160 265–288, 2008.
[4]
M. Pimentel, N. Oturan, M. Dezotti, and M. A. Oturan, “Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode,” Applied Catalysis B, vol. 83, no. 1-2, pp. 140–149, 2008.
[5]
M. Manafi, M. R. Mehrnia, and M. H. Sarrafzadeh, “Phenol Removal from Synthetic Wastewater by Alcaligenes Faecalis: Online Monitoring", International Journal of Chemical and Environmental Engineering, Vol.2, 2011.
[6]
A.S Stasinakis, “Use of selected advanced oxidation process (AOPs) for wastewater treatment – a mini review", Global NEST Journal, Vol. 10, No.3, pp 376-385, 2008.
[7]
I. Faisal, “Oxidation of Phenolic Wastewater by Fenton's Reagent" Iraqi Journal of Chemical and Petroleum Engineering, Vol. 10 No. 2, p 35-42, 2009.
[8]
M. M. Nassar, "Energy consumption and mass transfer during adsorption using gas and mechanical stirring systems", Water Research, Volume 32, Issue 10, pp. 3071–3079, 1998.
[9]
NSS Martinez, JF Fernandez, XF Segura, AS Ferrer, “Pre-oxidation of an extremely polluted industrial wastewater by the Fentons reagent”. J Hazard Mater, 101: 315–322, 2003.
[10]
E. Yüksela, I. Ayhan S, Mahmut Ozacar,“The removal of sodium dodecyl sulfate in synthetic wastewater by peroxi-electrocoagulation method.", Chemical Engineering Journal 152, 347–353, 2009.
[11]
American Society for Testing and Materials. Standard test methods for chemical oxygen demand (dichromate oxygen demand) of water. D1252-95, ASTM Annual Book of Standard. Philadelphia, 1995.
[12]
C.C. Jiang and J.F. Zhang, “Personal review: Progress and prospect in electro-Fenton process for wastewater treatment.” J. Zhejiang Univ-Sc. A, 8(7), 1118-1125, 2007.
[13]
J.A. Peres, L.M. Carvalho, R. Boaventura, C. Costa, “Characteristics of phydroxybenzoic acid oxidation using Fenton’s reagent”, Journal of Environmental Science and Health, Volume A 39, No. 11–12, pp 2897–2913, 2004.
[14]
M.M. Ghoneim, H.S. El-Desoky, N.M. Zidan, “Electro-Fenton oxidation of Sunset Yellow FCF azo-dye in aqueous solutions”, Desalination, Volume 274, Issues 1–3, Pages 22–30, 2011.
[15]
M. Zhou, Q. Yu, L. Lei, G. Barton, “Electro-Fenton method for the removal of methyl red in an efficient electrochemical system”, Separation and Purification Technology, Volume 57, Issue 2, Pages 380–387, 2007.
[16]
C.T. Wang, J.L. Hu, W.L. Chou, Y.M. Kuo, “Removal of color from real dyeing wastewater by electro-Fenton technology using a three-dimensional graphite cathode”, Journal of Hazardous Materials, Volume 152, Issue 2, Pages 601–606, 2008.
[17]
Z. Ai, T. Mei, J. Liu, J. Li, F. Jia, L. Zhang, J. Qiu, “Fe@Fe2O3 core-shell nanowires as an iron reagent. 3. Their combination with CNTs as an effective oxygen-fed gas diffusion electrode in a neutral electro-Fenton system, J. Phys. Chem. C 111, 14799–14803, 2007.
[18]
H. Zhang, H.J. Choi, C.P. Huang, “Optimization of Fenton process for the treatment of landfill leachate.” J. Hazard. Mater. Vol. 125, pp.166–174, 2005.
[19]
P.V. Nidheesh, R. Gandhimathi “Trends in Electro-Fenton Process for Water and Wastewater treatment: An Overview." Desalination, 299: 1-15. Rivas, 2012.
[20]
L Jiang, X Mao, “Degradation of phenol-containing wastewater using an improved Electro-Fenton Process" Journal of Electrochemical science, 7: 4078-4088, 2012.
[21]
M. Kobya, E .Demirbas, A. Dedeli, M.T. Sensoy, “Treatment of rinse water from zinc phosphate coating by batch and continuous electrocoagulation process". Journal of Hazard. Material, Vol. 173, pp. 326– 334, 2010.
[22]
L Yafeng, G Yuzhuo, T Cuicui, “Influencing Factors Research of Phenol Wastewater Treatment by Cathode Electro-Fenton Method.", ICAIC 2011, Part I, CCIS 224, pp. 726–733, 2011.
[23]
A. Babuponnusami and K. Muthukumar, “Advanced oxidation of phenol: a comparison between Fenton, electro-Fenton, sono-electro-Fenton and photo-electro-Fenton processes” Chemical Engineering Journal, vol. 183, pp. 1–9, 2012.