Ultrasonic Study of Nonlinear Internal Friction and Creep in Rocks under Uniaxial Stress
[1]
Valery Tsaplev, Dep. of Electroacoustics and Ultrasonics Engineering, Saint-Petersburg State Electrotechnical University (LETI), Saint-Petersburg, Russia; Dep. of Physics, North-West Open Technical University, Saint-Petersburg, Russia.
[2]
R. Konovalov, Dep. of Electroacoustics and Ultrasonics Engineering, Saint-Petersburg State Electrotechnical University (LETI), Saint-Petersburg, Russia.
[3]
R. Ivanyuk, Dep. of Electroacoustics and Ultrasonics Engineering, Saint-Petersburg State Electrotechnical University (LETI), Saint-Petersburg, Russia.
[4]
Victor Zverevich, Dep. of Mine Surveying, National Mineral Resourses University (“Gorny”), Saint-Petersburg, Russia.
[5]
Grigory Zhukov, Dep. of Mine Surveying, National Mineral Resourses University (“Gorny”), Saint-Petersburg, Russia.
The influence of the uniaxial static stress on the internal friction of different polycrystalline rocks was studied using the ultrasonic method of loaded complex oscillator. Different rocks with different coefficients of internal friction were studied – granite, dolomite, granulite, gabbro, hibinite, quartz, quartzite. Strong dependence of the internal friction coefficient from the uniaxial stress was found. These changes are accompanied by essential creep. Possible reasons for these phenomena are discussed.
Polycrystalline Rocks, Microporosity, Microcracks, Nonlinear Elasticity, Creep, Ultrasonic Control, Internal Friction, Uniaxial Stress, Ultrasonic Method, Loaded Complex Oscillator
[1]
V. V. Zverevich, G .I. Korshunov, V. K. Rybkin. Human Factor in Mine Surveying. S-Pb. Publ. H. «Nedra», 1998. 184 p.
[2]
V. N. Popov, X. Badamsuren, M. I. Bujanov, V. V. Rudenko. Womb Qualimetry. M.: Publishing House «Academy of Mining Sciences», 2000. 303 p.
[3]
G. Mavko, T. Mukerji, and J. Dvorkin. The Rock Physics handbook, 2-nd ed. 2009, 511 p. Cambridge Univ. Press. http://www.cambridge.org/9780521861366
[4]
D. Amitrano. Émergence de la complexité dans un modèle simple de comportement mécanique des roches. C. R. Geoscience 336 (2004) 505-512 doi:10.1016/j.crte.2003.11.023
[5]
Xiao Liu et al. Understanding the internal friction of a silicon micro-mechanical oscillator. Mat. Sci. and Engineering A 521-522 (2009) 389-392. doi:10.1016/j.msea.2008.10.065
[6]
A. Makani and T. Vidal. Relationship between Mineralogical and physic-mechanical properties of granitic aggregates. Chemistry and Materials Research, Vol.4 2013, 27-30
[7]
M. N. Bidgoli, L. Jing. Anisotropy of Strength and deformability of fractured rocks. J. of Rock Mech. and Geotech. Eng. 6(2014) 156-164. doi:101016/j.jrmge.2014.01.009
[8]
Fr. Birch (ed), J.F. Schairer, H. Cecil Spicer. Handbook of Physical Constants. – N.Y. 1942 PMid:19970666PMCid:PMC2032983.
[9]
Mineral physics and crystallography: a handbook of physical constants. Th. J. Ahrens (ed.), AGU, 1995, 357 p., http://dx.doi.org/10.1029/RF002
[10]
P.B. Belikov, K.S. Aleksandrov, T.V. Ryjova. Elastic properties of rockforming minerals and rocks. М.: Nauka, 1970. ‒ 276 p. (in Russian)
[11]
Zalessky B.V., Belikov B.P. Physical-mechanical studies and expert definition of life duration of the main types of facing stones from the main deposits of the USSR. Proc. IGN. Is.. 89, 1948 (in Russian)
[12]
C. Collettini et al. A novel and versatile apparatus for brittle rock deformation. Int. J. Rock Mech. & Mining Sci. 66 (2014) 114-123. doi:10.1016/j.ijrmms.2013.12.005
[13]
Amitrano D., A. Helmstetter, Brittle Creep, damage, and time to failure in Rocks / Journal of Geophysical Research. (2006) Vol. 111 B11201, doi: 10.1029/2005JB004252
[14]
D. P. Singh. A Study of Creep of Rocks. Int. J. Rock Mech. Min. Sci.& Geomech. Abstr. (1975) V. 12, pp.271-276
[15]
Li Yong, Zhu Weishen and Li Shucai. Experimental Investigation on Creep Deformation Behavior of Medium-strength Marble Rock. Research Journal of Applied Sciences, Engineering and Technology 7(2): 311-315, 2014.
[16]
Yongsheng Zhou et al. Rheological Complexity of Mafic Rocks and Effect of Mineral Component on Creep of Rocks. Earth Science Frontiers. 2009. 16(1), 76-87 doi:10.1016/S1872-5791(08)60074-3.
[17]
Tomanović Z. The stress and time dependent behavior of soft rocks. GRAÐEVINAR 64 (2012) 12, 993-1007
[18]
Tsaplev V.M., Ivanyuk R.M., Zverevitch V.V. Ultrasonic study of creep in polycrystalline rocks. Proceedings of Mining Institute. 2013. V. 204. p. 96-101
[19]
D. Healy et al. New insights into the development of brittle shear fractures from a 3-D numerical model of microcrack interaction. Earth and Planetary Science Letters 249 (2006) 14-28. doi:10.1016/j.epsl.2006.06.041
[20]
Porous Rocks and Effective Stresses. In: Petroleum Rock Mechanics. 2011. p.p. 77-105. Elsevier Ltd. doi:10.1016/B978-0-12-385546-6.00007-3
[21]
M. N. Bidgoli et al. Numerical evaluation of Strength and deformability of fractured rocks. J. Rock Mech. Geotechn. Eng. 5 (2013) 419-430 doi:10.1016/j.jrmge.2013.09.002
[22]
Kind V.A., Okorokov S.D. Building materials. Мoscow: Gosstroyizdat. 1934
[23]
Lomtadze V.D. Methods of laboratory studies of physical-mechanical properties of rocks. Мoscow: Nedra, 1972
[24]
Engelgart V. Pore space of sedimentary rocks. Мoscow: Nedra, 1964
[25]
Griffith A. The phenomena of rupture and flow in solids. Phil. Trans. Roy. Soc. 1921. Vol.221. Ser. A.
[26]
Y. Guéguen, A. Schubnel. Elastic wave velocities and permeability of cracked rocks / Tectonophysics 370 (2003) 163-176. doi: 10.1016/S0040-1951(03)00184-7
[27]
V.M. Merkulova, V.M. Tsaplev. Changes of sound velocities and internal friction at longitudinal and torsional vibrations under stress in microcracked media. Applied Acoustics. Taganrog: Publ. TRTI, 1973. ‒ p. p.118 – 128 (in Russian).
[28]
V.M. Merkulova. Influence of microcracks on the acoustical properties of media. Defectoscopia. 1972. №5. 51 ‒ 56
[29]
V.M. Tsaplev. Nonlinear Properties and Creep in Piezoceramics. S.-Petersburg: N-W Techn. Univ. 2003. 306 p.
[30]
V. M. Tsaplev. Studies of Elastic and Unelastic Properties of Ferroelectrics under High Uniaxial Stress. Intern. Journal of Acoustics and Vibration. 1997. Vol.2. № 4. 173 - 181
[31]
V. Tsaplev, R. Jvanyuk. Multicomponent Complex Vibrator with the Active Feedback Control for Nondestructive Testing of Materials. The 9-th Intern. Congr. on Sound and Vibration. 8‒11 July, 2002. Orlando, Florida, USA. 335-342
[32]
Read Т.А. Internal Friction of Rocks. Phys. Review. 1938. Vol.54. 389-395.
[33]
Read T.A. Internal Friction of Single Metal Crystals. Phys. Rev. 1940. V.58(4). 371-380
[34]
Cruden D.M. The form of the creep law for rock under uniaxial compression. Int. J. Rock Mech. Min. Sci. 8 (1971) 105-126
[35]
Jaeger J.C., Cook N.G.W. Fundamentals of rock mechanics. 3-rd ed. London: Chapman & Hall; 1979. p. 79, 311.
[36]
Dusseault M.B., Fordham C.J. Time behavior of rocks. In: Comprehensive rock engineering, principles, practice and projects, vol.3. Oxford. Pergamon Press; 1993
[37]
L. Ma, J. Daemen. An experimental study of creep of welded tuff. Int. Journal of Rock Mechanics & Mining Sciences 43 (2006) 282-291. doi: 10.1016/j.ijrmms. 2005.07.002
[38]
Costin L.S., Holcomb D.J. A continuum model of Inelasticity deformed brittle rock based on the mechanics of microcracks. In: Constitutive laws for engineering materials theory and applications. Proc. Int. Conf. Tucson, AZ, 1983
[39]
Poore M.W., Kesterson K.F. Measuring the thermal Expansion of solids with strain gages. Journal of Testing and Evaluation. 1978; 6 (2), 89-102
[40]
Ma L. Experimental Investigation of time dependent behavior of welded Toppah Spring tuff. Dis. Univ. Nevada, Reno, 2004
[41]
Cruden D.M. The static fatigue of brittle rock under uniaxial compression. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. (1974) V. 11, pp. 67-73
[42]
Kranz R.I., Scholz C.H. Critical dilatants volume of Rocks at the onset of tertiary creep. J. Geophys. Res. 1977; 82 (30). 4893-4898
[43]
P. Baud et al. Effects of porosity and crack density on the compressive strength of rocks. Int. J. Rock Mech. & Mining Sci. V.67(4), 2013,202-211.doi:10.1016/j.ijrmms.2013.08.031.
[44]
C. Cerrillo et al. New contributions to granite characterization by ultrasonic testing. Ultrasonics 54 (2014) 156-167, doi: 10.1016/j.ultras.2013.06.006
[45]
V. M. Tsaplev. Nonlinear acoustoelasticity of piezoceramic materials. P. II. Acoustical methods of measurements. S-Pb. State Electrotech. Univ. Publ. (“LETI”). 2014
[46]
V. Tsaplev, V. Zverevich, G. Zhukov. Use of acoustic technologies for anticeptic and waterproofing treatment of mine openings and building structures. Mine Surveying and Subsurface Usage. №2 (76), 2015, http://geomar.ru/issues-journal/journal-2015/188