Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
Short Review on Spectral Methods for the Determination of Chromiun in Human Body Fluids and Tissues
Current Issue
Volume 2, 2015
Issue 3 (November)
Pages: 13-19   |   Vol. 2, No. 3, November 2015   |   Follow on         
Paper in PDF Downloads: 100   Since Feb. 27, 2016 Views: 2062   Since Feb. 27, 2016
Maria G. Angelova, Department of Chemistry and Biochemistry & Physics and Biophysics, University of Medicine-Pleven, Pleven, Bulgaria.
Atanaska N. Bozhinova, Department of Chemistry and Biochemistry & Physics and Biophysics, University of Medicine-Pleven, Pleven, Bulgaria.
Background: The data for the determination of chromium concentrations in biological samples are still contradictory and for some biological objects varied within orders of magnitude. They are not fully clarified the role and participation in the metabolism in healthy subjects and in various diseases and conditions. Aim: One reason for the outstanding problems in the study of the functions of the chromium in the human organism is a need for accurate, with low detection limits, and access to a biomedical laboratory methods for the analytical determination. That’s why we set the aim to make a brief review of spectral methods for determination of chromium in human body fluids and tissues. Methods, results: Analytical methods which most commonly to apply at determining the chromium in biomaterials are the atomic spectral (AS) - Flame atomic absorption spectroscopy, Electrothermal atomic absorption spectrometry, Inductively coupled plasma optical emission spectrometry and Inductively coupled plasma mass spectrometry. They are accurate and have lower limits of detection, but not all biomedical laboratories have them. Of the molecular spectral, applicable methods with spectrophotometric indication for determination of chromium in biomaterials are the methods which used suitable chelating agents of chromium in micellar medium. They have limits of detection, comparable to AS-methods and are available to all biomedical laboratories. Conclusions: The lag in specifying the chromium concentrations in human bio-samples, related with clarifying the role of chromium in health and disease, can be overcome using both atomic spectral and spectrophotometric methods. Any study relating to the determination of chromium in human body fluids and tissues will contribute to the analytic of chromium and related the determining his biomedical research.
Cr AS-methods Body Fluids, Cr AS-methods Tissues, Cr Photometric Body Fluids, Cr Photometric Tissues
D. L. Tsalev, Atomic Absorption Spectrometry in Occupational and Environmental Health Practice, Vol. III: Progress in Analytical Methodology, CRC Press, Boca Raton, FL, 1995; ISBN 0-8493-4999-0.
Tasneem Gul Kazi, Hassan Imran Afridi, Naveed Kazi, Mohammad Khan Jamali, Mohammad Bilal Arain, Nussarat Jalbani, Ghulam Abbas Kandhro. Copper, Chromium, Manganese, Iron, Nickel, and Zinc, Levels in Biological Samples of Diabetes Mellitus Patientsл. Biol Trace Elem Res. 2008, 122: 1–18.
Christopher Jantzen, Henrik L Jørgensen, Benn R Duus,Sune L Sporring, and Jes B Lauritzen.. Chromium and cobalt ion concentrations in blood and serum following various types of metal-on-metal hip arthroplasties. Acta Orthop. 2013, 84(3): 229–236.
Teresa Lech and Danuta Dudek-Adamska. Optimization and Validation of a Procedure for the Determination of Total Chromiumin Postmortem Material by ETAAS. Journal of Analytical Toxicology, 2013, 37: 97–101
Rim Khlifi, Pablo Olmedo, Fernando Gil, Molka Feki-Tounsi, Amine Chakroun, Ahmed Rebai, Amel Hamza-Chaffai. Blood nickel and chromium levels in association with smoking and occupational exposure among head and neck cancer patients in Tunisia November. Environmental Monitoring and Assessment. 2013, 20(11) 8282-8294.
Li Yong, Kristie C. Armstrong, Royce N. Dansby-Sparks, Nathan A. Carrington, James Q. Chambers, and Zi-Ling Xue. Quantitative Analysis of Trace Chromium in Blood Samples. Combination of the Advanced Oxidation Process with Catalytic Adsorptive Stripping Voltammetry. Anal Chem. 2006; 78(21): 7582–7587.
E. Nasli-Esfahani, F. Faridbod1, B.Larijani1, M.R.Ganjali, P. Norouzi,. Trace element analysis of hair, nail, serum and urine of diabetes mellitus patients by inductively coupled plasma atomic emission spectroscopy. Iranian Journal of Diabetes and Lipid Disorders. 2011, 10, 1-9.
Rocha GHO, Steinbach C, Munhoz JR, Madia MAO, Faria JK, Hoeltgebaum D, Barbosar F, Batista BL, Souza VCO, Nerilo SB, Bando E, Mossini SAG, Nishiyama P. Trace metal levels in serum and urine of a population in southern Brazil. Journal of Trace Elements in Medicine and Biology. 2015, DOI: http://dx.doi.org/doi:10.1016/j.jtemb.2015.12.005.
R. Soomro, M. J. Ahmed, and N. Memon. Simple and rapid spectrophotometric determination of trace level chromium using bis (salicylaldehyde) orthophenylenediamine in nonionic micellar media, Turkish Journal of Chemistry, 2011, 35 (1): 155–170.
A. Alimonti, B. Bocca, E. Mannella, F. Petrucci, F. Zennaro, R. Cotichini, C. D’ippolito, A. Agresti, S. Caimi and G. Forte. Assessment of reference values for selected elementsin a healthy urban population. Ann Ist Super Sanitа 2005; 41(2): 181-187.
I. O. Olabanji, E. A. Oluyemi, F. O. Fatoye and J. C. Ngila. Elemental composition of blood and hair of mentally–ill patients using ICP-OES. Techniques. Int. J. Biol. Chem. Sci, 2011; 5(2): 663-679.
Nadica Todorovska, Irina Karadjova, Sonja Arpadjan, Trajce Stafilov. On chromium direct ETAAS determination in serum and urine. Central European Journal of Chemistry. 2007, 5(1), 230-238.
Auns Q. Hashim Al-Neami. Measurement of Trace Elements Association with Diabetes Mellitus Based on Atomic Absorption Spectrophotometers. Advances in Life Science and Technology, 2014, 24; 21–27.
Yi-Wei Wu, Jing Zhang, Jun-Feng Liu, Zhen-Li Deng, Mu-Xian Han, Feng Jiang, Dai-Zhi Wang, and Hui-Zhong Yuan. Determination of Chromium Species in Environmental Water and Human Serum Samples by FAAS After Magnetic Solid Phase Extraction. Atomic spectroscopy, 2011, 32(1), 43-50.
R. B. Georgieva, D. L. Tsalev. Chromium levels in erythrocytes, nails and urine as biomarkers of exposure – informational value and relevance. Bulgarian Journal of Chemistry, 2014, 3(1): 133-142.
R.B Georgieva DL Tsalev. Lead, chromium, manganese - toxicological profile, biological control and analytical determination. Chemistry and Industry. 2012, 83, 41-51.
Joseph M. Makaya, Aly Savadogo, Marius K. Somda, Jean-Baptiste Bour, Nicolas Barro, Alfred S. Traoré. Quality of Human Urine Used as Fertilizer: Case of an Ecological Sanitation Systemin Ouagadougou Peri-Urban Areas-Burkina Faso. Journal of nvironmental Protection, 2014, 5, 467-474.
Rosa Marı´a Cespo´n, Marı´a Carmen Yebra. Flow injection determination of total chromium in urine of occupationally exposed workers. Microchim Acta. 2008, 164: 225–229.
Benova D, Hadjidekova V, Hristova R, Nikolova T, Boulanova M, Georgieva I, Grigorova M, Popov T, Panev T, Georgieva R, Natarajan AT, Darroudi F and Nilsson R. Cytogenetic effects of hexavalent chromium in Bulgarian chromium platers, Mutation Research, 2002, 514: 29-38.
Nina Bilandžić, M. Sedak, M. Đokić, Đ. Božić. Determination of Macro- and Microelements in Cow, Goat, and Human Milk Using Inductively Coupled Plasma Optical Emission Spectrometry. 2015, 48(9): 677-684.
Pereira Lara, Paulo Celso, Nicácio Silveira, Josianne, Borges Neto, Waldomiro, Beinner, Mark A., da Silva, José B. B. Use of multivariate optimization to develop a method for direct chromium determination in breast milk by GF-AAS using aqueous calibration. Journal of Chemical & Pharmaceutical Research. 2015, 7:(3), 1900-1906.
A. A. Momen, M. A. A. Khalid1, M. A. A. Elsheikh, D. M. H. Ali, Trace elements in scalp hair and fingernails as biomarkers in clinical studies. Journal of Health Specialties. 2015, 3(1): 154-160.
Zhang J, Li GR, Liu LZ, Zhang N, Wang TC, Yan L, Jia G, Wang X. Chromium content in erythrocytes serving as the exposure biomarker for workers exposed to soluble chromate. PubMed. 2006; 40(6): 390-4.
R.S. Ajibola, O. A. Ogundahunsi, O. O. Soyinka, E. O. Ogunyemi and A. O. Odewabi. Serum Chromium, Molybdenum, Zinc and Magnesium Levels in Diabetes Mellitus Patients in Sagamu, South West Nigeria. Asian Journal of Medical Sciences. 2014, 6(2): 15-19.
Irnius, Danutë Speièienë, Karolina Pajenèkovskytë, Stasys Tautkus, Rolandas Kazlauskas, Aivaras Kareiva. Rapid quantitative determination of metals in blood and liver by FAAS. Journal of Trace Elements in Medicine and Biology. 2005, 16(3-4): 29–33.
Bona MA, Castellano M, Plaza L, Fernandez A. Determination of heavy metals in human liver. Hum Exp Toxicol. 1992, 11(5): 311-313.
Fakayode, S. Owen, D. Pollard and M. Yakubu, "Use of Flame Atomic Absorption Spectroscopy and Multivariate Analysis for the Determination of Trace Elements in Human Scalp," American Journal of Analytical Chemistry. 2013, 4(7): 348-359.
A. Shunmuga Perumal, A. Thangamani. Atomic absorption spectrophotometric determination of heavy metals lead and chromium levels in human hair of people living in katpadi and yelagiri hills of vellore district. International Journal of Research in Ayurveda & Research Article (IJRAP). 2011, 2 (5) 1568-1570.
Supaporn Pengping and Sukjit Kungwankunakorn. Determination of Some Heavy Metals in Human Hairby Ultrasonic Acid Digestion and Atomic Absorption Spectrophotometry. Chiang Mai J. Sci. 2014, 41(1):148-155.
Fernando Gil, Antonio F. Hernández, Claudia Márquez Pedro Femia c, Pablo Olmedo, Olga López-Guarnido, Antonio Pla. Biomonitorization of cadmium, chromium, manganese, nickel and lead in wholeblood, urine, axillary hair and saliva in an occupationally exposed population. Science of the Total Environment. 2011, 409: 1172–1180.
J. Stupar, F. Dolinsek -Determination of chromium, manganese, lead and cadmium inbiological samples including hair using direct electrothermal atomicabsorption spectrometry. Spectrochimica Acta Part B 51. 1996, 665-683.
Vladimir Zaichick, Sofia Zaichick Use of Neutron Activation Analysis and Inductively Coupled Plasma Mass Spectrometry for the Determination of Trace Elements in Pediatric and Young Adult Prostate. American Journal of Analytical Chemistry, 2013, 4, 696-706.
Brodziak-Dopierała B1, Kwapuliński J2, Sobczyk K3, Wiechuła D1.Chromium content in the human hip joint tissues. Biomed Environ Sci. 2015, 28(2):89-96.
Pietro Apostoli. Graziano Maranelli, Pier Giorgio Duca, Paolo Bavazzano, Angelo Bortoli, Aldo Cruciatti, Giuseppe Elia, Claudio Minoia, Renza Piccinini, Enrico Sabbioni, Gianfranco Sciarra, Claudio Soave. Reference values of urinary chromium in Italy. Int Arch Occup Environ Health, 1997, 70: 173-179.
Brodziak-Dopierała B, Kwapuliński J, Sobczyk K, Wiechuła D. Chromium content in the human hip joint tissues. Biomed Environ Sci., 2015, 28(2):89-96.
G. Christian and J. O'Reilly. Instrumental Analysis. Publishing University of Sofia, Sofia, 1998.
D. L. Tsalev, Atomic emission spectrometry with inductively-coupled plasma in "Fundamentals of chemical analysis" Compiled by prof. DSc Eng. Rahila Borisova, ed. Aquarius, Sofia, 2009, Chapter 4, Section 4.1.2, p. 214-226. ISBN 978-954-9415-43-5.
Supaporn Pengping and Sukjit Kungwankunakorn. Determination of Some Heavy Metals in Human Hair by Ultrasonic Acid Digestion and Atomic Absorption Spectrophotometry. Chiang Mai J. Sci. 2014; 41(1):148-155.
Dayene C. Carvalho, Nivia M. M. Coelho, Luciana Melo Coelho, Simone S. S. Borges, Thais S. Neri, Vanessa N. Alves. Strategies to increase selectivity of analytical methods for As, Cr and Se speciation in biological samples. Sample Preparation. 2014, 2(1):1–12.
A. G. G. Dionısio, A. M. Dantas de Jesus, R. St´abile Amais, G. Lu´ıs Donati, Kelber dos Anjos Miranda. Marcelo Braga Bueno Guerra, Joaquim Araujo Nobrega, and Edenir Rodrigues Pereira-Filho. Old and New Flavors of Flame (Furnace) Atomic Absorption Spectrometry. International Journal of Spectroscopy. 2011, Article, 30 pages.
D. L. Tsalev, L. Simeonov, M. Kochubovski, B. Simeonova. Environmental Heavy Metal Pollution and Effects on Child Mental Development, Risk Assessment and Prevention Strategies. Springer, Dordrecht, 2011.
D.C. Carvalho, N. M. M. Coelho, L. Melo Coelho, S. S. S. Borges, Thais S. Neri, V.N. Alves. Strategies to increase selectivity of analytical methods for As, Cr and Se speciation in biological samples: A review. Sample Preparation, 2014, 2 (1) 1-12.
Ağaoğlu, G., Arun, T., İzgü, B., & Yarat, A. Nickel and Chromium Levels in the Saliva and Serum of Patients with Fixed Orthodontic Appliances. Angle Orthodontist, 2001, 71 (5):375-379.
Teresa Lech and Danuta Dudek-Adamska. Optimization and Validation of a Procedure for the Determination of Total Chromium in Postmortem Material by ETAAS. J Anal Toxicol, 2013, 37 (2): 97-101.
Ting-Wan Lin and Shang-Da Huang.Direct and Simultaneous Determination of Copper, Chromium, Aluminum, and Manganese in Urine with a Multielement Graphite Furnace Atomic Absorption Spectrometer. Anal. Chem., 2001, 73 (17), 4319–4325.
F Barbosa et al. Evaluation of electrodeposited tungsten chemical modifier for direct determination of chromium in urine by ETAAS. Microchemical Journal, 2004; 78 (7) 13-19.
R. Cornelis, B. Heinzow, R. F. M. Herber, M. Jakubowski, J. Molin Christensen, M. Poulsen, E. Sabbioni, D. M. Templeton. Sample collection guidelines for trace elements in blood & urine. Pure & Appl. Chem, 1995, 67 (8/9) 1575-1608.
Vandecasteele, C., and Block, C.B., Modern methods for trace elements determination, John Wiley &Sons1993, Chichester.
Aggarwal SK, Kinter M., Fitzgerald RL and Herold DA. Masss pectrometry of trace elements in biological samples. Critical reviews in clinical sciences, 1994, 31; (1) 35–87.
M. Llobat-Estellés, A. Maurí-Aucejo, M. López-Catalán. Spectrophotometric determination of chromium with diphenylcarbazide in the presence of vanadium, molybdenum, and iron after separation by solid-phase extraction. Fresenius' Journal of Analytical Chemistry, 2001, 371 (3), 358-363.
P. Nagaraj, N. Aradhana, A.Shivakumar, A. Kumar Shrestha, A. K. Gowda. Spectrophotometric method for the determination of chromium (VI) in water samples. Environmental Monitoring and Assessment, 2009, 157, (1-4) 575-582.
I. Sreevani, P. Raveendra Reddy, V. Krishna Reddy. A Rapid and Simple Spectrophotometric Determination of Traces of Chromium (VI) in Waste Water Samples and in Soil samplesby using 2-Hydroxy, 3-Methoxy Benzaldehyde Thiosemicarbazone (HMBATSC). IOSR Journal of Applied Physics (IOSR-JAP), 2013, 3 (1); 40-45.
Xiaokun Wang, Yingqin Wei, Shasha Wang, Lingxin Chen. Red-to-blue colorimetric detection of chromium via Cr (III)-citrat chelating based on Tween 20-stabilized gold nanoparticles. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2015, 472; 57–62.
Abdollahi H. Simultaneous spectrophotometric determination of chromium (VI) and iron (III) with chromogenic mixed reagents by H-point standard addition method and partial least squares regression. Analytica Chimica Acta, 2001, 442; (2):327-336.
Maheswari V. and Balasubramanian N. Spectrophotometric determination of chromium based on ion-pair formation. Chem. Anal. (Warsaw), 1996, 41, 569.
E V Larionova and K A Bulygina. Simultaneous spectrophotometric determination of chromium (VI) and iron (III) in alloys. IOP Conf. Ser.: Mater. Sci. Eng.81, 2015.
Martelli P B, Reis B F, Kronka E A M, F H B, Korn M, Zagatto E A G and Araujo A N. Multicommutation in flow analysis. part 2. binary sampling for spectrophotometric determination of nickel, iron and chromium in steel alloys Analytica Chimica Acta, 1995, 308 (1), 397-405.
Luciene S. de Carvalho, Antônio Celso S. Costa, Sérgio L. C. Ferreira, Leonardo S. G. Teixeira. Spectrophotometric determination of chromium in steel with 4-(2- thiazolylazo)-resorcinol (TAR) using microwave radiation. J. Braz. Chem. Soc., São Paulo, 2004, 15(1):153-157.
C. Tayone. Spectrophotometric Determination of Chromium (VI) in Canned Fruit Juices J. International Journal of Sciences: Basic and Applied Research (IJSBAR), 2015, 19(1): 426-432.
De, AK (2003). Environmental Chemistry, 5th ed.; New Age International, New Delhi.
Quanti Chrom TM, Chromium Assay Kit (DCRM-250) Quantitative Colorimetric Determination of Chromium (2012, in online). BioAssay Systems 3191, Corporate Place Hayward, CA 94545 USA.
Fabiyi, F.A.S., Donnio, A.Z. Use of variamine blue as a chromogenic reagent for rapid spectrophotometric determination of nano amount of chromium. Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, 2007, 37(10):809-812.
D. G. Barceloux. Chromium. J Toxicol Clin Toxicol, 1999, 37(2): 173-94.
Chromium Assay Kit (MAK130) - Technical Bulletin - Sigma -Aldrich. Colorimetric Test of Chromium (2013, in online). http://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Bulletin/2/mak130bul.pdf
Abnova™ Chromium Assay Kit (Colorimetric). Manufacturer: ABNOVA CORPORATION KA3771. Cat. No. 89-101-188. Sample Type Beverage, Food, Plasma, Serum, Soil, Water. https://www.fishersci.com/shop/products/abnova-chromium-assay-kit-colorimetric-1-kit/89101188
Maria G. Angelova, Atanaska N. Bozhinova, Nadia Kolarova-Ianeva. Determination of serum chromium and application at children with primary arterial hypertension. American Journalof Chemistry and Applications, 2015, 2 (1): 1-4.
Atanaska N. Bozhinova, Maria G. Angelova. Trace Chromium in Human Urine Samples with Photometric Detection Method. American Journal of Chemistry and Applications, 2015; 2(3): 61-65.
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
Copyright © 2013-, Open Science Publishers - All Rights Reserved