Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
Molecular Cloning, Expression and Regulation of Fatty Acid Desaturases 6 (FADS 6) Gene in Goose Fatty Liver
Current Issue
Volume 7, 2020
Issue 1 (January)
Pages: 1-7   |   Vol. 7, No. 1, January 2020   |   Follow on         
Paper in PDF Downloads: 34   Since Feb. 13, 2020 Views: 925   Since Feb. 13, 2020
Authors
[1]
Rashid Habiballa Osman, Colleage of Animal Production, West Kordofan University, El Nuhud, Sudan; College of Animal Science and Technology, Yangzhou University, Yangzhou, China.
[2]
Daoqing Gong, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.
[3]
Long Liu, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.
[4]
Ahmed Kamel, College of Veterinary Science, Seuz Canal University, Seuz, Egypt.
[5]
Mojahid Abdallah Abdalhag, College of Animal Science and Technology, Yangzhou University, Yangzhou, China; College of Agricultural Technology & Fish Science, Al Neelain University, Khartoum, Sudan.
[6]
Tamador Algam, College of Agricultural Technology & Fish Science, Al Neelain University, Khartoum, Sudan.
[7]
Wafaa Babiker Zomrawi, Faculty of Agriculture and Natural Resources, University of Bakht Elruda, Al-Dueim, Sudan.
[8]
Fredrick Baraka Kaingu, School of Agriculture & Biological Sciences, Karatina University, Nyeri, Kenya.
Abstract
In goose industry fatty liver weight is an important trait. Fatty acid desaturase is a potential therapeutic target as Fads expression and mutations are associated with liver fat. Here, we are first employed RNA-seq technology to determine the differentially expressed genes in the livers from normally-fed vs. overfed geese, followed by bioinformatics analysis and quantitative PCR validation in goose liver and primary hepatocytes cell. Based on amino acid sequence a phylogenetic tree of goose Fads6 gene had a higher identity in Duck. Data indicated that hepatic Fads6 expression was gradually increased with the time of overfeeding. Moreover, cell studies showed that Fads 6 expression was regulated by fatty liver associated factors.
Keywords
Fatty Liver, Goose, Fatty Acid Desaturase-6, Overfeeding, Primary Hepatocytes
Reference
[1]
D. Hermier, A. Saadoun, M.-R. Salichon, N. Sellier, D. Rousselot-Paillet, M. J. Chapman, Plasma lipoproteins and liver lipids in two breeds of geese with different susceptibility to hepatic steatosis: changes induced by development and force-feeding, Lipids 26 (1991) 331-339.
[2]
J. Mourot, G. Guy, P. Peiniau, D. Hermier, Effects of overfeeding on lipid synthesis, transport and storage in two breeds of geese differing in their capacity for fatty liver production, Animal Research 55 (2006) 427-442.
[3]
D. Hermier, D. Rousselot-Pailley, R. Peresson, N. Sellier, Influence of orotic acid and estrogen on hepatic lipid storage and secretion in the goose susceptible to liver steatosis, Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism 1211 (1994) 97-106.
[4]
D. S. Knutzon, J. M. Thurmond, Y.-S. Huang, S. Chaudhary, E. G. Bobik, G. M. Chan, S. J. Kirchner, P. Mukerji, Identification of Δ5-desaturase from Mortierella alpina by heterologous expression in bakers’ yeast and canola, Journal of Biological Chemistry 273 (1998) 29360-29366.
[5]
L. V. Michaelson, C. M. Lazarus, G. Griffiths, J. A. Napier, A. K. Stobart, Isolation of a Δ5-Fatty Acid Desaturase Gene from Mortierella alpina, Journal of Biological Chemistry 273 (1998) 19055-19059.
[6]
H. P. Cho, M. Nakamura, S. D. Clarke, Cloning, expression, and fatty acid regulation of the human Δ-5 desaturase, Journal of Biological Chemistry 274 (1999) 37335-37339.
[7]
A. E. Leonard, B. KELDER, E. G. BOBIK, L.-T. CHUANG, J. M. PARKER-BARNES, J. M. THURMOND, P. E. KROEGER, J. J. KOPCHICK, Y.-S. HUANG, P. MUKERJI, cDNA cloning and characterization of human Δ5-desaturase involved in the biosynthesis of arachidonic acid, Biochemical Journal 347 (2000) 719-724.
[8]
J. L. Watts, J. Browse, Isolation and Characterization of a Δ5-Fatty Acid Desaturase fromCaenorhabditis elegans, Archives of Biochemistry and Biophysics 362 (1999) 175-182.
[9]
T. Aki, Y. Shimada, K. Inagaki, H. Higashimoto, S. Kawamoto, S. Shigeta, K. Ono, O. Suzuki, Molecular cloning and functional characterization of rat Δ-6 fatty acid desaturase, Biochemical and biophysical research communications 255 (1999) 575-579.
[10]
H. P. Cho, M. T. Nakamura, S. D. Clarke, Cloning, expression, and nutritional regulation of the mammalian Δ-6 desaturase, Journal of Biological Chemistry 274 (1999) 471-477.
[11]
H. Lu, J.-N. Li, Y.-R. Chai, X.-K. Zhang, Identification and characterization of a novel∆ 6-fatty acid desaturase gene from Rhizopus nigricans, Molecular biology reports 36 (2009) 2291-2297.
[12]
O. Sayanova, M. A. Smith, P. Lapinskas, A. K. Stobart, G. Dobson, W. W. Christie, P. R. Shewry, J. A. Napier, Expression of a borage desaturase cDNA containing an N-terminal cytochrome b5 domain results in the accumulation of high levels of Δ6-desaturated fatty acids in transgenic tobacco, Proceedings of the National Academy of Sciences 94 (1997) 4211-4216.
[13]
T. Girke, H. Schmidt, U. Zähringer, R. Reski, E. Heinz, Identification of a novel D6‐acyl‐group desaturase by targeted gene disruption in Physcomitrella patens, The Plant Journal 15 (1998) 39-48.
[14]
R. Zhang, L. Zhu, Y. Zhang, D. Shao, L. Wang, D. Gong, cDNA cloning and the response to overfeeding in the expression of stearoyl-CoA desaturase 1 gene in Landes goose, Gene 512 (2013) 464-469.
[15]
K. J. Livak, T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T)) Method, Methods 25 (2001) 402-408.
[16]
K. Tamura, G. Stecher, D. Peterson, A. Filipski, S. Kumar, MEGA6: Molecular Evolutionary Genetics Analysis version 6.0, Mol Biol Evol 30 (2013) 2725-2729.
[17]
K. Tamura, M. Nei, Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees, Mol Biol Evol 10 (1993) 512-526.
[18]
R. R. Brenner, Hormonal modulation of Δ6 and Δ5 desaturases: case of diabetes, Prostaglandins, leukotrienes and essential fatty acids 68 (2003) 151-162.
[19]
V. Wijendran, I. Downs, C. T. Srigley, K. S. Kothapalli, W. J. Park, B. S. Blank, J. P. Zimmer, C. Butt, N. Salem, J. T. Brenna, Dietary arachidonic acid and docosahexaenoic acid regulate liver fatty acid desaturase (FADS) alternative transcript expression in suckling piglets, Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA) 89 (2013) 345-350.
[20]
T. Melin, Å. Nilsson, Delta-6-desaturase and delta-5-desaturase in human Hep G2 cells are both fatty acid interconversion rate limiting and are upregulated under essential fatty acid deficient conditions, Prostaglandins, leukotrienes and essential fatty acids 56 (1997) 437-442.
[21]
Y. H. Ko, C. H. Cheng, T. F. Shen, S. T. Ding, Cloning and expression of Tsaiya duck liver fatty acid binding protein, Poult Sci 83 (2004) 1832-1838.
[22]
R. H. Osman, L. Liu, L. Xia, X. Zhao, Q. Wang, X. Sun, Y. Zhang, B. Yang, Y. Zheng, D. Gong, Fads1 and 2 are promoted to meet instant need for long-chain polyunsaturated fatty acids in goose fatty liver, Molecular and cellular biochemistry 418 (2016) 103-117.
[23]
R. Brenner, Factors influencing fatty acid chain elongation and desaturation, (1989).
[24]
B. L. Scott, N. G. Bazan, Membrane docosahexaenoate is supplied to the developing brain and retina by the liver, Proceedings of the National Academy of Sciences 86 (1989) 2903-2907.
[25]
H. Sprecher, D. L. Luthria, B. Mohammed, S. P. Baykousheva, Reevaluation of the pathways for the biosynthesis of polyunsaturated fatty acids, Journal of Lipid Research 36 (1995) 2471-2477.
[26]
T. Kawaguchi, M. Takenoshita, T. Kabashima, K. Uyeda, Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation/dephosphorylation of the carbohydrate response element binding protein, Proceedings of the National Academy of Sciences 98 (2001) 13710-13715.
[27]
K. Iizuka, R. K. Bruick, G. Liang, J. D. Horton, K. Uyeda, Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis, Proceedings of the National Academy of Sciences of the United States of America 101 (2004) 7281-7286.
[28]
E. Fournier, R. Peresson, G. Guy, D. Hermier, Relationships between storage and secretion of hepatic lipids in two breeds of geese with different susceptibility to liver steatosis, Poultry Science 76 (1997) 599-607.
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
CONTACT US
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
E-mail:
LET'S GET IN TOUCH
Name
E-mail
Subject
Message
SEND MASSAGE
Copyright © 2013-, Open Science Publishers - All Rights Reserved