Character Association and Casual Effects of Polygenic Traits in Spring Wheat (Triticum aestivum L.) Genotypes
[1]
Muhammad Zeeshan , Barani Agricultural Research Station, Fatehjang, Pakistan.
[2]
Waheed Arshad , Barani Agricultural Research Station, Fatehjang, Pakistan.
[3]
Muhammad Imran Khan , Barani Agricultural Research Station, Fatehjang, Pakistan.
[4]
Shiraz Ali , Barani Agricultural Research Station, Fatehjang, Pakistan.
[5]
Muhammad Tariq , Barani Agricultural Research Institute, Chakwal, Pakistan.
The present study was conducted at Barani Agricultural Research Station, Fatehjang, during rabi 2011-12 to evaluate variability, heritability, genetic advance, character association and their causal effects on grain yield plant-1 in ten wheat genotypes viz. BARS-09, AARI-11, Punjab-11, Millat-11, Chakwal-50, Lasani-08, NARC-09, Seher-06, Auqab-2000 and 05FJS3074. All the genotypes demonstrated highly significant differences for all the traits. Grain yield plant-1 had positive and significant correlation at both genotypic and phenotypic levels with 1000-grain weight and harvest index, number of tillers plant-1 and spike length but non-significant with number of spikelets spike-1 and flag leaf area. 1000-grain weight showed maximum direct effect (0.7298) towards grain yield plant-1 followed by number of tillers plant-1 (0.6638), harvest index (0.4021) and spike length (0.2629) while lowest direct effect was contribute by flag leaf area (-0.1196). High heritability genetic advance was exhibited by number of tillers plant-1, harvest index and grain yield plant-1 that confirms their additive gene action. Characters like; 1000-grain weight, spike length, number of tillers plant-1 and harvest index should be considered in selection procedure towards improvement in grain yield plant-1 indirectly.
Wheat, Yield Components, Heritability, Genetic Advance, Correlation, Path Coefficient
[1]
Abinasa, M., A. Ayana and G. Bultosa. 2011. Genetic variability, heritability and trait association in durum wheat (Triticum turgidum L. var. durum) genotypes. Afri. J. Agric. Res. 6:3972-3979.
[2]
Ahmad, B., I.H. Khalil, M. Iqbal and Hidayat-ur-rahman. 2010. Genotypic and phenotypic correlation among yield components in bread wheat under normal and late plantings. Sarhad J. Agric. 26:259-265.
[3]
Ahmed, H.M., B.M. Khan, S. Khan, N.S. Kissana and S. Laghari. 2003. Path coefficient analysis in bread wheat. Asian J. Plant Sci. 2:491-494.
[4]
Anwar, J., M.A. Ali, M. Hussain, W. Sabir, M.A. Khan, M. Zulkiffal and M. Abdullah. 2009. Assessment of yield criteria in bread wheat through correlation and path analysis. The J. Animal & Plant Sci. 19:185-188.
[5]
Ashraf, M., A. Ghafoor, N.A. Khan and M. Yousaf. 2002. Path coefficient in wheat under rainfed conditions. Pak. J. Agric. Res. 17:1-6.
[6]
Baranwal, D.K., V.K. Mishra, M.K. Vishwakarma, P.S. Yadav and B. Arun. 2012. Studies on genetic variability, correlation and path analysis for yield and yield contributing traits in wheat (T. aestivum L. Em thell.) Plant Archives 12:99-104.
[7]
Dewey, D.R. and R.H. Lu. 1959. A correlation and path coefficient analysis of components of crested wheat grass and its seed production. Agron. J. 51:515-518.
[8]
El- Mohsen, A.A.A., S.R.A. Hegazy and M.H. Taha. 2012. Genotypic and phenotypic interrelationships among yield and yield components in Egyptian bread wheat genotypes. J. Plant Breed. Crop Sci. 4:9-16.
[9]
Government of Pakistan. 2011. Agricultural Statistics of Pakistan 2010-11. Ministry of Food, Agriculture and Livestock, Economic Wing, Islamabad. p. 44-58.
[10]
Johnson, H.W., H.F. Robinson and R.E. Comstock. 1955. Estimates of genetic and environmental variability in Soybeans. Agron. J. 47:314-318.
[11]
Joshi, B.K., A. Mudwari and D.B. Thapa. 2008. Correlation and path coefficients among quantitative traits in wheat (Triticum aestivum L.). Nepal J. Sci. Tech. 9:1-5.
[12]
Khaliq, I., N. Parveen and M.A. Chowdhry. 2004. Correlation and path coefficient analyses in bread wheat. Int. J. Agri. Biol. 6:633-635.
[13]
Khan, A.J., F. Azam, A. Ali, M. Tariq and M. Amin. 2005. Inter-relationship and path coefficient analysis for biometric traits in drought tolerant wheat (Triticum aestivum L.). Asian J. Plant Sci. 4:540-543.
[14]
Khan, M.H. and A.N. Dar. 2010. Correlation and path coefficient analysis of some quantitative traits in wheat. African Crop Sci. J. 18:9 -14.
[15]
Khokhar, M.I., M. Hussain, M. Zulkiffal, N. Ahmad and W. Sabar. 2010. Correlation and path analysis for yield and yield contributing characters in wheat (Triticum aestivum L.). Afr. J. Plant Sci. 4:464-466.
[16]
Kown, S.H. and J.H. Torrie. 1964. Heritability and interrelationship among traits of two soybean populations. Crop Sci. 4:196-198.
[17]
Mohammad, T., S. Haider, M. Amin, M.I. Khan and R. Zamir. 2005. Path coefficient and correlation studies of yield and yield associated traits in candidate bread wheat (Triticum aestivum L.) Lines. Suranaree J. Sci. Technol. 13:175-180.
[18]
Mohsin, T., N. Khan and F.N. Naqvi. 2009. Heritability, phenotypic correlation and path coefficient studies for some agronomic characters in synthetic elite lines of wheat. Journal of Food, Agri. Environ. 7:278-282.
[19]
Singh, K.P., B.D. Chaudhry. 1979. Biometrical methods in quantitative genetic analysis. Kalyani Publishers, New Delhi. p.9-10
[20]
Steel, R.G.D., J.H. Torrie and D.A. Dickey. 1997. Principles and Procedures of Statistics: A Biometrical Approach. 3rd Ed. McGraw Hill Book Co, Inc, New York, USA. pp. 400-428.
[21]
Subhani, G.M. and M.A. Chowdhry. 2000. Correlation and path coefficient analysis in bread wheat under drought stress and normal conditions. Pak. J. Bio. Sci. 3:72-77.
[22]
Subhashchandra, B., H.C. Lohithaswa, S.A. Desai, R.R. Hanchinal, I.K. Kalappanavar, K.K. Math, P.M. Salimath. 2009. Assessment of genetic variability and relationship between genetic diversity and transgressive segregation in tetraploid wheat. Karanataka J. Agric. Res. 22:36-38.
[23]
Tsegaye, D., T. Dessalegn, Y. Dessalegn and G. Share. 2012. Genetic variability, correlation and path analysis in durum wheat germplasm (Triticum durum Desf). Agric. Res. Rev. 1:107-112.
[24]
Zecevic, V., D. Knezevic, D. Micanovic. 2004. Genetic components and path coefficient analysis of yield and quality components in wheat (Triticum aestivum L.). Genetika. 36:13-21.