Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
Effect of Row Spacing on the Growth and Yield of Peanut (Arachis hypogaea L.) Stands
Current Issue
Volume 3, 2015
Issue 1 (February)
Pages: 7-11   |   Vol. 3, No. 1, February 2015   |   Follow on         
Paper in PDF Downloads: 175   Since Aug. 28, 2015 Views: 2924   Since Aug. 28, 2015
Authors
[1]
M. A. Awal, Laboratory of Plant Ecology, Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, Bangladesh.
[2]
Lija Aktar, Laboratory of Plant Ecology, Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, Bangladesh.
Abstract
An experiment was conducted at the Crop Botany Field Laboratory of Bangladesh Agricultural University, Mymensingh, during the period extended from November 2010 to April 2011 to study the effect of row spacing on the growth and yield of peanut (Arachis hypogaea). The experiment comprised five row spacings viz. 15, 20, 25, 30 and 35 cm which was laid out in a Randomized Complete Block Design with three replications. Plant to plant distance in a row for all the row spacing treatment was maintained as 15 cm. Result showed that row spacing had significant effect on growth and yield contributing characters such as plant height, number of branches/plant, leaf area index, dry matter accumulation, pod/plant, 1000-seed weight, pod or seed yield, biological yield and harvest index. It is evident that crop stature increased due to the closing of row spacing from 35 to 15 cm but the number of branches/plant has been decreased. Crops grown with wider row produced larger number of pod/plant, heavier seed and higher harvest index. Wider row spacing (i.e. 35 cm) although facilitated to accumulate larger dry matter/plant, however greater accumulation of biomass per unit of land was occurred at 20 cm inter row distance. Crop grown with 20 cm row spacing produced the highest seed yield (2.01 t/ha) and pod yield (2.82 t/ha), and thereafter the yield decreased gradually with widening the row spacing.
Keywords
Growth, Management, Peanut, Row Spacing, Yield
Reference
[1]
Brar, K.S., Kaul, J.N. and Kaur, N. (2004). Pod production of kernel verses pod planted groundnut genotypes in relation to water soaking and intra-row spacing. J. Res. Punjab Agric. Univ., 41 (2): 186-190.
[2]
Gupta, S.K. (1998). Effect of plant geometry of growth and yield of mustard. India J. Agron., 33 (2): 208-209.
[3]
Hossain, M.M, Islam, A.K.M.R., Karim, K.M.R., Islam, M.S. and Islam, N. (2005). Groundnut yields as influenced by sowing date, spacing and varieties. Int’l J. Sustainable Agric. Technol., 1 (6): 12-18.
[4]
Islam, M.S., Sarkar, M.A.R., Rahman, M.S., Musa, A.M. and Dhan, S.C. (1994). Effect of plant population density on transplant aus rice under tidally flooded conditions. Bangladesh J. Agric. Sci., 21 (2): 349-353.
[5]
Jahan, M.S. (1998). Allometry, Resource Allocation and Yield in Mungbean: Effect of Population Density and Planting Configuration. M.S. Thesis in Agronomy. IPSA, Gazipur. pp. 22-29.
[6]
Johnson, R.R., Green, D.E. and Jordan, C.W. (1982). What is the best soybean row width? Australian Perspective. J. Crops and Soils, 34: 10-13.
[7]
Jyothi, M.R., Kumari, C.R., Oblamma, U. and Lingram, B. (2004). Response of early rabi groundnut (Arachis hypogaea L.) to spacing, irrigation and plant population levels. J. Oilseed Res., 21 (1): 171-172.
[8]
Kaushik, M.K. and Chaubey, A.K. (2000). Response of rainy season bunch groundnut (Arachis hypogaea L.) to row spacing and seed rate. India: Agric. Res. Inform. Centre, 20 (3): 407-410.
[9]
Krishnamurthy, N., Rudraradhya, M., Paramesh, R., et al. (1994). Effect of closer spacing and nitrogen dressing for higher biomass production in Hibiscus sabdariffa. J. Agric. Sci., p. 227.
[10]
Miah, M.N.H., Karim, M.A., Rahman, M.S. and Islam, M.S. (1990). Performance of Nigersail mutants under different row spacing, Bangladesh J. Train. Dev., 3 (2): 31-34.
[11]
Nijafi, H., Khodabandeh, N., Poustini, K., Zeinali, H. and Pouredavaei, H. (1997). The effects of planting patterns and dates of planting on yield and yield components of soybean. Indian J. Agric. Sci., 28 (2): 65-72.
[12]
Nimje, P.M. (1996). Effect of row spacing, mulching and weed control on weed growth and yield of soybean (Glycine max). Indian J. Agron., 41 (3): 427-432.
[13]
Patil, H.M., Kolekar, P.T. and Shete, B.T. (2007). Effect of layouts and spacing on yield quality of bold seeded summer groundnut (Arachis hypogaea L.). Int’l J. Agric. Sci., 3 (2): 210-213.
[14]
Patra, A.K., Tripathy, S.K. and Samui, R.C. (1998). Effect of sowing date, irrigation and spacing on yield components and yield of summer groundnut. Ann. Agric. Res., 19 (4).
[15]
Patra, A.K., Tripathy, S.K. and Samui, R.C. (1999). Effect of sowing date, irrigation and spacing on nodulation, dry matter and yield of summer groundnut (Arachis hypogaea). Indain J. Agron., 44 (4): 800-804.
[16]
Rahman, M.M. and Miah, A.A. (1995). Yield determinants of a promising mungbean line under various planting densities. Pertanica J. Agric. Sci., 18 (2): 119-124.
[17]
Seiter, S., Altemose, C.E. and Davis, M.H. (2004). Forage soybean yield and quality responses to plant density and row distance. Agron. J., 96 (4): 966-970.
[18]
Siddique, K.H.M., Sedgley, R.H. and Marshall, C. (1984). Effect of plant density on growth and harvest index of branches in chickpea. Cicer aerietimum L. Field Crop Res. Abs., 28: 193-203.
[19]
Sumadi, S., Pasaribu, D. and Izumiyama, Y. (1989). Soybean growth and its relationship with variety and plant population. Agric. Res. Indonesia, 9 (1): 45-48.
[20]
Tavora, F.J.A.F., Henriques-Neto, D., Silva, F.P. and Melo, F.I.O. (2002). Peanut response to plant densities and planting pattern: light interception, growth analysis and yield. Revista- Ciencia-Agronomica, 33 (2): 5-12.
[21]
Wells, R. (1993). Dynamics of soybean growth in variable planting pattern. Agron. J., 85: 44-48.
[22]
Yilmaz, H.A. (1999). Effect of different plant densities of two groundnut (Arachis hypogaea L.) genotypes on yield, yield components, and oil and protein contents. Turkish J. Agric. For., 23 (3): 299-308.
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
CONTACT US
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
E-mail:
LET'S GET IN TOUCH
Name
E-mail
Subject
Message
SEND MASSAGE
Copyright © 2013-, Open Science Publishers - All Rights Reserved