Optical Digital Biopsy: Subcellular Identification and Update of Technology
[1]
Zárate Jorge Oscar, Departament of Patology, Faculty of Medicine, Buenos Aires University, CPEA, Ophthalmic Research Laboratory and Vision Sciences (UBA) and Digital Laboratory Pathology, Maimonides University, Buenos, Aires, Argentina.
[2]
Pelayes David, Departament of Patology, Faculty of Medicine, Buenos Aires University, CPEA, Ophthalmic Research Laboratory and Vision Sciences (UBA) and Digital Laboratory Pathology, Maimonides University, Buenos, Aires, Argentina.
[3]
Folgar Martin, Departament of Patology, Faculty of Medicine, Buenos Aires University, CPEA, Ophthalmic Research Laboratory and Vision Sciences (UBA) and Digital Laboratory Pathology, Maimonides University, Buenos, Aires, Argentina.
[4]
Lacarta Guillermo, Departament of Patology, Faculty of Medicine, Buenos Aires University, CPEA, Ophthalmic Research Laboratory and Vision Sciences (UBA) and Digital Laboratory Pathology, Maimonides University, Buenos, Aires, Argentina.
[5]
Alvarado Miguel, Departament of Patology, Faculty of Medicine, Buenos Aires University, CPEA, Ophthalmic Research Laboratory and Vision Sciences (UBA) and Digital Laboratory Pathology, Maimonides University, Buenos, Aires, Argentina.
Introduction: We report our initial observations on the technique of “optical digital biopsy” and its applications in a variety of diseases involving the vitreous, retina, retinal pigment epithelium, and choroid. In this case we present a diagnosis of lipofucsina deposits in which was replicated the optical digital biopsy with optimal results in our conclusions, confirmed later by enucleation. Optical digital biopsy is a noninvasive technique that is allows the assessment of cellular composition and tissue, but the refinement of technique and additional validation studies are still necessary before being able to apply it clinically.
Optical Digital Biopsy, Lipofucsin, Update
[1]
Zarate JO, Pelayes D, Singh A. Optical digital biopsy. A new method of tissue and cell identification with ophthalmic applications. Patología 2012; 50(3):179-181.
[2]
Wojtkowski M, Bajraszewski T, Gorczynska I, et al. Ophthalmic imaging by spectral optical coherence tomography. Am J Ophthalmol 2004;138:412.
[3]
Zárate JO. Optical Digital Biopsy. Brush strokes and pixels in the wonderful Latinamerican iconography. Patología 51(3):206-9.
[4]
Zárate JO. Digital optical biopsy. Possible extension to no other ophthalmic tissue. Patología Rev Latinoam 2014;52:246-247
[5]
Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG. Optical coherence tomography. Science. 1991; 254:1178–1181. [PubMed]
[6]
Fercher AF, Hitzenberger CK, Drexler W, Kamp G, Sattmann H. In vivo optical coherence tomography. Am J Ophthalmol. 1993; 116:113–114. [PubMed]
[7]
Swanson EA, Izatt JA, Hee MR, Huang D, Lin CP, Schuman JS, Puliafito CA, Fujimoto JG. In vivo retinal imaging by optical coherence tomography. Opt Lett. 1993; 18:1864–1866. [PubMed]
[8]
Izatt JA, Hee MR, Swanson EA, Lin CP, Huang D, Schuman JS, Puliafito CA, Fujimoto JG. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch Ophthalmol. 1994; 112: 1584–1589. [PubMed]
[9]
Zárate Jorge Oscar, Pelayes David, Folgar Martín, Lacarta Guillermo, Alvarado Miguel. Optical Digital Biopsy: Uveal Choroidal Melanoma: Case Report and Update of Technology. Open Science Journal of Clinical Medicine. Vol. 3, No. 2, 2015, pp. 59-63.