Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
Differential Subordination and Sandwich Theorems for Class of Meromorphic Functions
Current Issue
Volume 2, 2015
Issue 2 (March)
Pages: 21-28   |   Vol. 2, No. 2, March 2015   |   Follow on         
Paper in PDF Downloads: 60   Since Aug. 28, 2015 Views: 2325   Since Aug. 28, 2015
Authors
[1]
R. M. EL-Ashwah, Department of Mathematics, Faculty of Science, Damietta University, New Damietta, Egypt.
[2]
M. E. Drbuk, Department of Mathematics, Faculty of Science, Damietta University, New Damietta, Egypt.
Abstract
In this paper we study differential subordination and sandwich theorems defined on the space of meromorphic functions which are defined by linear operator. Also, we obtained some interesting results by using appropriate choices of the parameters and the special corresponding functions.
Keywords
Univalent, Meromorphic, Differential Subordination, Linear Operator, Hadamard Product
Reference
[1]
R. M. Ali, V. Ravichandran and K. G. Subramanian, Differential sandwich theorems for certain analytic functions, Far East J. Math. Sci., 15 (2004), no. 1, 87-94
[2]
M. Ali and M. Saeed, On a differential subordination and superordination of new class of meromorphic functions, Le Matematiche, 69 (2014), 259-274.
[3]
F. M. Al-Oboudi and H. A. Al-Zkeri, Applications of Briot-Bouquet differential subordination to some classes of meromorphic functions, Arab J. Math. Sci., 12 (2006), no. 1, 17-30.
[4]
M. K. Aouf, F. M. Al-Oboudi and M. M. Hadain, An application of certain integral operator, Math. (Cluj), 47 (70) (2005), no. 2, 121-124.
[5]
M. K. Aouf and T. Bulboaca, Subordination and Superordination properties of subclasses of multivalent functions defined by certain integral operator, J. Franklin Inst., 347 (2010), 641-653.
[6]
M. K. Aouf, T. Bulboaca and A.O. Mostafa, Subordination properties of subclasses of p-valent functions involving certain operators, Publ. Math. Debrecen, 73 (2008), 401-416.
[7]
M. K. Aouf and R. M. El-Ashwah, Differential sandwich theorems for certain subclasses of analytic functions involving an extended multiplier transformation, Tokyo J. Math., 33 (2010), no. 1, 73-88.
[8]
T. Bulboacă, Classes of first order differential superordinations, Demonstratio Math., 35 (2002), no. 2, 287-292.
[9]
T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, (2005).
[10]
N. E. Cho, I. H. Kim and H. M. Srivastava, Sandwich-type theorems for multivalent functions associated with Srivastava-Attiya operator, Appl. Math. Comput., 217 (2010), 918-928.
[11]
N. E. Cho, O. S. Kwon, and H. M. Srivastava, Inclusion and argument properties for certain subclasses of meromorphic functions associated with a family of multiplier transformations, J. Math. Anal. App., 300 (2004), no. 2, 505-520.
[12]
N. E. Cho, O. S. Kwon, and H. M. Srivastava, Inclusion relationships for certain subclasses of meromorphic functions associated with a family of multiplier transformations, Integral Transforms and Special Functions, 16 (2005), no. 8, 647-659.
[13]
R. M. El-Ashwah, Inclusion relationships properties for certain classes of meromorphic functions associated with Hurwitz-Lerech Zeta function, Acta Univ. Apulensis, 34 (2013), 191-205.
[14]
R. M. El-Ashwah, Inclusion properties regarding the meromorphic structure of Srivastava-Attiya operator, Southeast Asian Bull. Math., 38 (2014), 501-512.
[15]
E. Hille, Ordinary Differential Equations in the Complex Plane, John Wiley, New York, (1976).
[16]
S. S. Miller and P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl. 65 (1978), 289-305.
[17]
S. S. Miller and P. T. Mocanu, Differential Subordination: Theory and Applications, Series on Monographs and Textbooks in Pure and Appl. Math., Vol. 225, Marcel Dekker Inc., New York and Basel, (2000).
[18]
S. S. Miller and P. T. Mocanu, Subordinates of differential superordinations, Complex Variables, 48 (2003), no. 10, 815-826.
[19]
P.T. Mocanu, T. Bulboacă and G. Ş. Sălăgean, Teoria geometrică a funcţiilor univalente, Casa Cărţii de Ştiinţă, Cluj-Napoca, (2006).
[20]
J. K. Prajapat, Subordination and superordination preserving properties for generalized multiplier transformation operator, Math. Comput. Modelling, 55 (2012), 1456-1465.
[21]
J. Patel and P. Sahoo, Some applications of differential subordination to certain one-parameter families of integral operators, Indian J. Pure and Appl. Math., 35 (2004), no. 10, 1167-1177.
[22]
W. C. Royster, On the univalence of a certain integral, Michigan Math. J., 12 (1965), 385-387.
[23]
S. Shams, S. R. Kulkarni and Jay M. Jahangiri, Subordination properties for p-valent functions defined by integral operator, Internat. J. Math. Math. Sci., (2006), Art. ID 94572, 1-3.
[24]
T. N. Shanmugam, V. Ravichandran and S. Sivasubramanian, Differantial sandwich theorems for some subclasses of analytic functions, J. Austr. Math. Anal. Appl., 3 (2006), no. 1, Art. 8, 1-11.
[25]
J. Sokol, Convolution and subordination in the convex hull of convex mappings, Appl. Math. Letters, 19 (2006), 303-306.
[26]
B. A. Uralegaddi and C. Somanatha, New criteria for meromorphic starlike univalent functions, Bull. Austral. Math. Soc., 43 (1991), no. 1, 137-140.
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
CONTACT US
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
E-mail:
LET'S GET IN TOUCH
Name
E-mail
Subject
Message
SEND MASSAGE
Copyright © 2013-, Open Science Publishers - All Rights Reserved