Synthesis and Biological Activity of Novel Hydrazide-Hydrazones Incorporating Piperidine and Piperazine Moieties and Related Mannich Bases
Reaction of the hydrazide 2, or the bis(hydrazide) 8, with the appropriate aromatic aldehyde gave the new hydrazide-hydrazones 3a-g and 9a-g, respectively. Mannich reaction of 3e-g and 9e-g, with formalin and piperidine afforded the corresponding phenolic Mannich bases 4-6 and 10-12. The chemical structures of the prepared compounds were elucidated using spectral data. The biological activity including antioxidant and antimicrobial activity of the synthesized compounds were investigated. Compounds 3b, 3e, 3g and 9b showed the highest antioxidant activity, while the antimicrobial activity of compounds 3e, 3g and 9b showed the highest activity against E. coli. Moreover, compounds 3b, 3e, 3g, 9b and 9g have highest activity against S. aureus, and compounds 3b, 3e, 3g and 9g showed highest activity against C. Albicans.
Hydrazide-Hydrazones, Bis (Hydrazide-Hydrazones), Phenolic Mannich Bases
[1]
S. Rollas, S. G. Küçükgüzel, Biological Activities of Hydrazone Derivatives Molecules Molecules 2007, 12, 1910-1939.
[2]
R. Narang, B. Narasimhan, S. Sharma, A Review on Biological Activities and Chemical Synthesis of Hydrazide Derivatives Curr. Med. Chem. 2012, 19, 569-612.
[3]
G. Verma, A. Marella, M. Shaquiquzzaman, M. Akhtar, M. R. Ali, M. M. Alam, A review exploring biological activities of hydrazones J. Pharm. Bioallied Sci. 2014, 6, 69-80.
[4]
Y. Janin, Antituberculosis drugs: Ten years of research, Bioorg. Med. Chem. 2007, 15, 2479-2513.
[5]
K. Pradeep, Narasimhan, N. Balasubramanian, Hydrazides/Hydrazones as Antimicrobial and Anticancer Agents in the New Millennium, Mini Rev. Med. Chem., 2013, 13, 971-987.
[6]
A. B. Farag, H. A. Ewida, M. S. Ahmed, Design, synthesis, and biological evaluation of novel amide and hydrazide based thioether analogs targeting Histone deacetylase (HDAC) enzymes Eur. J. Med. Chem.. 2018, 148, 73-85.
[7]
I. F. Zeid, N. A. Mohamed, N. M. Khalifa, PI3K Inhibitors of Novel Hydrazide Analogues Linked 2-Pyridinyl Quinazolone Scaffold as Anticancer Agents Journal of Chemistry. 2019, doi.org/10.1155/2019/6321573
[8]
G. Uppal, S. Bala, S. Sunil Kamboj, M. Saini, Therapeutic Review Exploring Antimicrobial Potential of Hydrazones as Promising Lead, Der Pharma Chemica, 2011, 3, 250-268.
[9]
V. J. Negi, A. K. Sharma, J. S. Negi, V. Ram, V., Biological Activities of Hydrazone Derivatives In The New Millennium, Intern. J. Pharm. Chem. 2012, 2, 100-109.
[10]
W. Khalid, A. Badshah, A. Khan, Synthesis, Characterization, Molecular Docking Evaluation, Antiplatelet and Anticoagulant Actions 1,2,4 Triazole Hydrazone and Sulphonamide Novel Derivatives Chemistry Central Journal. 2018, 12, 0378-5.
[11]
B. Bottari, R. Maccari, F. Monforte, R. Ottanà, E. Rotondo, M. G. Vigorita, Isoniazid-Related Copper (II) and Nickel (II) Complexes with Antimycobacterial In Vitro Activity, Bioorg. Med. Chem. Lett., 2000, 10, 657.
[12]
B. Bottari, R. Maccari, F. Monforte, R. Ottanà, E. Rotondo, M. G. Vigorita, Antimycobacterial In Vitro Activity of Cobalt (II) Isonicotinoylhydrazone Complexes, Bioorg. Med. Chem. Lett., 2001, 11, 301.
[13]
R. Maccari, R. Ottanà, B. Bottari, E. Rotondo, M. G. Vigorita, In vitro advanced antimycobacterial screening of cobalt (II) and copper (II) complexes of fluorinated isonicotinoylhydrazones, Bioorg. Med. Chem. Lett., 2004, 14, 5731.
[14]
S. S. Kanwar, K. Lumba, S. K. Gupta, V. M. Katoch, P. Singh, A. K. Mishra, S. B. Kalia, Synthesis and mycobactericidal properties of metal complexes of isonicotinoyldithiocarbazic acid, Biotechnol. Lett., 2007, 30, 677.
[15]
P. Krishnamoorthy, P. Sathyadevi, K. Senthilkumar, P. T. Muthiah, R. Ramesh, N. Dharmaraj, Copper (I) hydrazone complexes: Synthesis, structure, DNA binding, radical scavenging and computational studies, Inorg. Chem. Commun., 2011, 14, 1318.
[16]
G. Gurkok, N. Altanlar, S. Suzen, Investigation of Antimicrobial Activities of Indole-3-Aldehyde Hydrazide/Hydrazone Derivatives, Chemotherapy 2009, 55, 15-19.
[17]
S. Rollas, N. Gulerman, H. Erdeniz, Synthesis and antimicrobial activity of some new hydrazones of 4-fluorobenzoic acid hydrazide and 3-acetyl-2,5-disubstituted-1,3,4-oxadiazolines, II Farmaco 2002, 57, 171-174.
[18]
D. Kaushik, S. A. Khan, G. Chawla, S. Kumar, N’-[(5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl) methylene] 2/4-substituted hydrazides: Synthesis and anticonvulsant activity, Eur. J. Med. Chem. 2010, 45, 3943-3949.
[19]
S. K. Sridhar, S. N. Pandeya, J. P. Stables, A. Ramesh, Anticonvulsant activity of hydrazones, Schiff and Mannich bases of isatin Derivatives, Eur. J. Pharm. Sci. 2002, 16, 129-132.
[20]
K. Bedia, O. Elcin, U. Seda, K. Fatma, S. Nathaly, A. Dimoglo, Synthesis and characterization of novel hydrazide–hydrazones and the study of their structure–antituberculosis activity, Eur. J. Med. Chem. 2006, 41, 1253-1261.
[21]
T. Aboul-Fadl, F. A. Bin-Jubair, O. Aboul-Wafa, Schiff bases of indoline-2,3-dione (isatin) derivatives and nalidixic acid carbohydrazide, synthesis, antitubercular activity and pharmacophoric model building, Eur. J. Med. Chem. 2010, 45, 4578-4586.
[22]
[19] A. Jamadar, A. Duhme-Klair, K. Vemuri, M. Sritharan, P. Dandawatec, S. Padhye, Synthesis, characterization and antitubercular activities of a series of pyruvate-containing aroylhydrazones and their Cu-complexes, Dalton Trans. 2012, 41, 9192-9201.
[23]
B. Pati1, S. Banerjee, Importance of piperidine moiety in medicinal chemistry research: a review, J. Pharm. Res. 2012, 5, 5493-5509.
[24]
P. Goel, O. Alam, M. J. Naim, F. Nawaz, M. Iqbal, M. I. Alam, Recent advancement of Piperidine Moiety in Treatment of Cancer, Eur. J. Med. Chem. 2018, 157, 480-502.
[25]
R. Kharb, K. Bansal, A. K. Sharma, Valuable insight into recent advances on antimicrobial activity of piperazine derivatives, Der Pharma Chemica, 2012, 4, 2470-2488.
[26]
M. X. Dong, L. Lu, H. Li, X. Wang, H. Lu, S. Jiang, Q. Y. Dai, Design, synthesis, and biological activity of novel 1,4-disubstituted piperidine/piperazine derivatives as CCR5 antagonist-based HIV-1 entry inhibitors, Bioorg. Med. Chem. Lett. 2012, 22, 3284-3286.
[27]
E. M. Afsah, S. S. Elmorsy, S. M. Abdelmageed, Z. E. Zaki, Synthesis of some new hydrazide-hydrazones related to isatin and its Mannich and Schiff bases, Z. Naturforsch. 2016, 71b, 1147-1157.
[28]
E. M. Afsah, S. S. Elmorsy, S. M. Abdelmageed, Z. E. Zaki, Synthesis of some new mixed azines, Schiff and Mannich bases of pharmaceutical interest related to isatin, Z. Naturforsch. 2015, 70b, 393-402.
[29]
E. M. Afsah, E. M. Keshk, A. A. Abdel-Rahman, N. F. Jomah, Mannich Bases as Synthetic Intermediates: Convenient Synthesis of Functionalized 1, 2, 4-Triazepines, 1,4-Diazepines and 1, 5-Diazocines, Z Naturforsch. 2011, 66b, 577-584.
[30]
B. M. Kotecka, G. B. Barlin, M. D. Edstein, K. H. Rieckmann, New Quinoline Di-Mannich Base Compounds with Greater Antimalarial Activity than Chloroquine, Amodiaquine, or Pyronaridine, Antimicrob Agents Chemother 1997, 41, 1369-1374.
[31]
K. J. Raynes, P. A. Stocks, P. M. O' Neill, B. K. Park, S. A. Ward, New 4-Aminoquinoline Mannich Base Antimalarials. 1. Effect of an Alkyl Substituent in the 5¢-Position of the 4¢-Hydroxyanilino Side Chain, J Med. Chem 1999, 42, 2747-2751.
[32]
G. B. Barlin, T. M. T. Nguyen, B. M. Kotecka, K. H. Rieckmann, Potential Antimalarials. XV. Di-Mannich Bases of 2-(7`-Chloroquinolin-4`-ylamino) phenol and 2-[7`-Bromo (and trifluromethyl)-1`,5`-naphthyridin-4`-ylamino] phenol., Aust J Chem 1992, 45, 1651-1662.
[33]
H. I. Gul, K. O. Yerdelen, U. Das, M. Gul, B. Pandit, P. K. Li, J. R. Dimmock, Synthesis and Cytoxicity of Novel 3-Aryl-1-(3`-dibenzylaminomethyl-4`-hydroxyphenyl)-Propenones and Related Compounds, Chem Pharm Bull 2008, 56, 1675-1681.