Heat Capacity Difference of Alkali Metals
The heat capacity difference of liquid alkali metals has been the determined on the basis of a generalized van der Waals equation of state over a wide range of temperatures from the boiling point to the critical point. With the increase in temperature, the heat capacity difference of liquid alkali metals is found to increase. In the temperature range from the boiling point to 0.8𝑇𝑐, the heat capacity difference of liquid alkali metals has a parabolic dependence on temperature. In the temperature range from 0.8𝑇C to 𝑇C, heat capacity difference of liquid alkali metals has a linear dependence on temperature with a large positive slope. As the generalized van der Waals equation of the state accurately determines the thermophysical properties of alkali metals in wide range of temperature from the boiling point to the critical point, the obtained data on the heat capacity difference of liquid alkali metals may be considered to be reliable.
Alkali Metals, Heat Capacity, Equation of State
[1]
A. A. Likal'ter, H. Schneidenbach, Physica A, 293, 3-4(2000)
[2]
M. H. Ghatee, M. Bahadori, J. Phys. Chem. B 105, 11256 (2001).
[3]
W. C, Pilgrim, S. Hosokawa, C. Morkel, Contrib. PlasmaPhys., 41, 283 (2001).
[4]
H. Eslami, S. Sheikh, A. Boushehri, HighTemp.-High Press, 33, 237 (2001).
[5]
H. Eslami, S. Sheikh, A. Boushehri, HighTemp.-High Press, 33, 725 (2001).
[6]
A. A. Likal'ter, H. Hess, Schneidenbach, Phys. Scripta, 66, 89 (2002).
[7]
F. Hensel, W. C. Pilgrim, Contrib. PlasmaPhys., 43, 306 (2003).
[8]
L. Maftoon-Azad, A. Boushehri, Int. J. Thermophysics, 25, 893 (2004).
[9]
V. Rogankov, T. Bedrova, VisnykLviv Univ. Ser. Physics, 38, 197 (2005).
[10]
E. K. Goharshadi, A. R. Boushehri, J. Nucl. Mat., 348, 40 (2006).
[11]
K. Matsuda, M. Inui, K. Tamura, Sci, Techn. Adv. Mat., 7, 483 (2006).
[12]
F. Mozaffari, H. Eslami, A. Boushehri, Int. J. Thermophys., 28, 1 (2006).
[13]
O. M. Krasilnikow, FizikaMetalov IMetalovedenie, 103, 306 (2007).
[14]
O. D. Zhakhrova, A. M. Semenov, Teplofiz. Vys. Temp., 46, 59 (2008).
[15]
L Maftoon-Azad, H. Eslami, A. Boushehri, Fluid Phase Equilbria, 263, 1 (2008).
[16]
G. G. N. Angilella, N. H. March, R. Pucci, Phys. Chem. Liq., 46, 86 (2008).
[17]
L A. Blagonravov, Teplofiz. Vys Temp., 46, 680 (2009).
[18]
N. Farzi, R. Srfari, F. Kermanpour, J. MolLiq., 137, 159 (2009).
[19]
D. N. Kagan, G. A. Krechetova, E. E. Shpil'rain, HighTemp.48, 506-510 (2010).
[20]
V. A. Krashaninin, A. A. Yur'ev, E. A. Yur'ev, Russian Metallurgy, 2011, 709-714 (2011).
[21]
N. E. Dubinin, A. A. Yurgev, N. A. Vatolin, J. of Structural Chem., 53, 468-475 (2012).
[22]
V. A. Krashaninin, N. E. Dubinin, N. A. Vatolin, Doklady Phys., 58, 339-342 (2013).
[23]
V. I. Rachkov, M. N. Amol'dov, A. D. Efanov, S. G. Kalyakin, F. A. Kozlov, N. I. Loginov, Yu. I. Orlov, A. P. Sorokin, Thermal Engineering, 61, 337-347 (2014).
[24]
D. K. Belashchenko, Russian J. of Physicschem. A, 89, 2051 – 2063 (2015).
[25]
A. V. Mokshin, R. M. Khusnutdinow, A. R. Akhmerova, A. R. Musabirova, JETP Letters, 106, 366-370 (2017).
[26]
V. A. Krashaninin, N. E. Dubinin, AcademicianN. A. Vatolin, Doklady Phys., 58, 339-342 (2013).
[27]
Zhanjiang, PR. China, J. of MaterialScience & Engineering, 6, 349 (2017).
[28]
Annette Heinzel, WolfagangHering, JurgenKonys, Luca Marocco, KarstenLitfin, Georg Muller, Julio Pacio, CarstenSchroer, RobertStieglitz, Leonid Stoppel, AlfonsWeisenburger, Thomas Wetzel, Technology, 5, 1026- 1036 (2017).
[29]
Rajesh C. Malan, Aditya M. Vora, J. of Nano – and Electronic Physics, 10, 1-4 (2).
[30]
D. Bolmatov, V. V. Brazhkin, K. Trachenko, Scientific Reports, Vol.2, Article No.421, (2012).
[31]
A. Pastore, N. Chamel anJ. Margueron Monthly Notes of the Royal Astronomical Society, Vol, 1887-1892 (2015).
[32]
D. Milan Zabransky, Zdenka Kolska, Vlastimil Ruzicka, Jr, Eugene S. Domalskl, Journal of Physical and Chemical References
[33]
Mohamed Bijedic and Sabina Begic, Journal of Thermodynamics, Article ID 2035704, 8 pages, (2016).
[34]
Jacobo Troncoso, The Journal of Chemical Physics 147, 084501 (2017).
[35]
Annette Heinzel, Wolfgang Hering, Jurgen Konys, Luca Marocco, Karstrn Litfin, Georg Muller, Julio Pacio, Carsten Schroer, Robert Stieglitz, Leonid Stoppel, Alfons Weisenburger, and Thomas Wetzel, Energy Technology, Vol.5, 1026 (2017).
[36]
S. V. Stankus, I. V. Savchenko, and O. S. Yatsuk, Russian Academy of Sciences, Vol.6, No.4, pp 633 635, (2018).
[37]
S. V. Stankus, I. V. Savchenko, and O. S. yatsuk,, Jounal of Engineering Thermodynamics, Vol.27, No.1, pp. 30-35.(2018).
[38]
Wanjing Cui, Long LI, yafei Guo, Sisi Zhang, and Tianlong Deng, Journal of Chemistry, Article ID 7962739, 4 pages,(2018).
[39]
M. M. Martynyuk, R. Balasubramanian, Int. J. Thermophys., 16 (2), 533–543 (1995).
[40]
R. Balasubramanian, High Temp.-HighPress, 34, 335 (2002).
[41]
R. Balasubramanian, Int. J. Thermophys., 24, 201-206 (2003).
[42]
R. Balasubramanian, J. Chem., Eng. Jpn., 37, 1415 (2004).
[43]
R. Balasubramanian, Physica B, 381, 128 (2006).
[44]
R. Balasubramanian, Int. J. Thermophys., 27, 1494-1500 (2006).
[45]
R. Balasubramanian, J. Nucl. Mat., 366, 272 (2007).
[46]
R. Balasubramanian, Asia-Pacific J. Chem. Eng., 3, 90 (2008).
[47]
R. Balasubramanian, J. of MolecularLiquids, 151, 130-133 (2010).
[48]
R. Balasubramanian, ThermochimicaActa, 566, 233-237 (2013).
[49]
R. Balasubramanian, A. Kowsarbanu, R. Ramesh, Open Science Journal of Modern Physics. Vol. 5, No. 2, 24(2018).
[50]
R. Balasubramanian, A. Ramesh, A. Kowsarbanua American Journal of Chemistry and Materials Science., Vol. 5, No. 6, 91 (2018).
[51]
R. Balasubramanian, Ph. D Thesis Russisan Peoples Friendship University, Moscow, Russia (1993).