Isothermal Compressibility of Liquid Alkali Metals
The isothermal compressibility of liquid alkali metals has been determined on the basis of a generalized van der waals equation of state over a wide range of temperatures from the boiling point to the critical point. With the increase in temperature, the isothermal compressibility of liquid alkali metals is found to increase. In the temperature range from the boiling point to 0.9Tc, the isothermal compressibility of liquid alkali metals has a parabolic dependence on temperature. In the temperature range from 0.9 Tc to Tc, the isothermal compressibility of liquid alkali metals has a linear dependence on temperature with a large positive slope. As the generalized van der Waals equation of state accurately determines the thermophysical properties of alkali metals in wide range of temperature from the boiling point to the critical point, the obtained data on the isothermal compressibility of liquid alkali metals may be considered to be reliable.
Alkali Metals, Isothermal Compressibility, Equation of State
[1]
A. A. Likal'ter, H. Schneidenbach, Physica A, 293, 3-4 (2000).
[2]
M. H. Ghatee, M. Bahadori, J. Phys. Chem. B 105, 11256 (2001).
[3]
W. C, Pilgrim, S. Hosokawa, C. Morkel, Contrib PlasmaPhys., 41, 283 (2001).
[4]
H. Eslami, S. Sheikh, A. Boushehri, High Temp.-High Press, 33, 237 (2001).
[5]
H. Eslami, S. Sheikh, A. Boushehri, High Temp.-High Press, 33, 725 (2001).
[6]
A. A. Likal'ter, H. Hess, Schneidenbach, Phys. Scripta, 66, 89 (2002).
[7]
F. Hensel, W. C. Pilgrim, Contrib. Plasma Phys., 43, 306 (2003).
[8]
L. Maftoon-Azad, A. Boushehri, Int. J. Thermophysics, 25, 893 (2004).
[9]
V. Rogankov, T. Bedrova, VisnykLviv Univ. Ser. Physics, 38, 197 (2005).
[10]
E. K. Goharshadi, A. R. Boushehri, J. Nucl Mat., 348, 40 (2006).
[11]
K. Matsuda, M. Inui, K. Tamura, Sci, Techn. Adv. Mat., 7, 483 (2006).
[12]
F. Mozaffari, H. Eslami, A. Boushehri, Int. J. Thermophys., 28, 1 (2006)..
[13]
O. M. Krasilnikow, FizikaMetalov IMetalovedenie, 103, 306 (2007).
[14]
O. D. Zhakhrova, A. M. Semenov, Teplofiz. Vys. Temp., 46, 59 (2008).
[15]
L Maftoon-Azad, H. Eslami, A. Boushehri, Fluid Phase Equilbria, 263, 1 (2008).
[16]
G. G. N. Angilella, N. H. March, R. Pucci, Phys. Chem. Liq., 46, 86 (2008).
[17]
LA. Blagonravov, Teplofiz. Vys Temp., 46, 680 (2009).
[18]
N. Farzi, R. Srfari, F. Kermanpour, J. Mol Liq., 137, 159 (2009).
[19]
D. N. Kagan, G. A. Krechetova, E. E. Shpil'rain, High Temp. 48, 506-510 (2010).
[20]
V. A. Krashaninin, A. A. Yur'ev, E. A. Yur'ev, Russian Metallurgy, 2011, 709-714 (2011).
[21]
N. E. Dubinin, A. A. Yurgev, N. A. Vatolin, J. of Structural Chem., 53, 468-475 (2012).
[22]
V. A. Krashaninin, N. E. Dubinin, N. A. Vatolin, Doklady Phys., 58, 339-342 (2013).
[23]
V. I. Rachkov, M. N. Amol'dov, A. D. Efanov, S. G. Kalyakin, F. A. Kozlov, N. I. Loginov, Yu. I. Orlov, A. P. Sorokin, Thermal Engineering, 61, 337-347 (2014).
[24]
D. K. Belashchenko, Russian J. of Physics chem. A, 89, 2051 – 2063 (2015).
[25]
A. V. Mokshin, R. M. Khusnutdinow, A. R. Akhmerova, A. R. Musabirova, JETP Letters, 106, 66-370 (2017).
[26]
V. A. Krashaninin, N. E. Dubinin, AcademicianN. A. Vatolin, Doklady Phys., 58, 339-342 (2013).
[27]
Zhanjiang, PR. China, J. of Material Science & Engineering, 6, 349 (2017).
[28]
Annette Heinzel, WolfagangHering, JurgenKonys, Luca Marocco, Karsten Litfin, Georg Muller, Julio Pacio, Carsten Schroer, RobertStieglitz, Leonid Stoppel, Alfons Weisenburger, Thomas Wetzel, Technology, 5, 1026-1036 (2017).
[29]
Rajesh C. Malan, Aditya M. Vora, J. of Nano – and Electronic Physics, 10, 1-4 (2018).
[30]
Mukherjee. M et al., “Isothermal compressibility of hadronic matter formed in relativistic nuclear collisions” Physics Letters (B 784) 1–5 (2018).
[31]
DanielA. Camargoa et al., “XENON1T takes a razor to a dark E6-inspired model” Physics Letters (B 786) 337–341 (2018).
[32]
Tadeusz Balcerzak et al., “A simple thermodynamic description of the combined Einstein and elastic models” cond-mat. stat- mec] (2013).
[33]
Brett Christie, “On the correlation between Isothermal Compressibility and Isobaric Expansivity” Energy Solutions International 1426 (2014).
[34]
Brian P. Dolan, “Pressure and compressibility of conformal field theories from the AdS/CFT correspondence” hep-th (2016).
[35]
Muhammad Ali Al-Marhoun,“The Coefficient of Isothermal Compressibility of Black Oils”King Fahd University of Petroleum and Minerals Dhahran 81432 (2017).
[36]
N. Andres, et al., “Energy cascade rate in Isothermal Compressible Magnetohydrodynamic turbulence” Journal of Plasma Physics (2018).
[37]
Mukherjee. M et al., “Estimation of the isothermal Compressibility from event-by-event multiplicity fluctuation studies” EPJ Web of Conferences 171, 14010 (2018).
[38]
H. Sakuma And M. Ichiki “Density and isothermal compressibility of supercritical H2O–NaCl fluid: molecular dynamics study from 673 to 2000 K, 0.2 to 2 GPa, and 0 to 22 wt% NaCl Concentrations” Geofluids 16, 89–102 (2016).
[39]
Ejoh Chukwudumebi Rebecca, et al., “Coefficient of Isothermal Gas Compressibility for Reservoir Fluid in Niger Delta Region” International Journal of Science and Engineering Investigations vol. 4, issue 47, (2015).
[40]
Brett Christie, et al., “On the Correlation between Isothermal ompressibility and Isobaric Expansivity” formerly Energy Solutions Int’l. (2016).
[41]
I. A. Stepanov, et al., “Failure of the Identity That Links Thermal Expansionand Isothermal Compressibility in the Case of Condensed Phases” Physical Science International Journal 18 (1): 1-7, (2018).
[42]
Swatantra Kumar Tiwari, Sushanta Tripathy et al., “Dissipative properties and isothermal compressibility of hot anddense hadron gas using non-extensive statistics” The European Physical Journal (2018).
[43]
Jean-Patrick Bazile “The Journal of Supercritical Fluids”140 (2018).
[44]
Y. Marcus, “On the Compressibility of Liquid Metals”, J. Chem. Thermodynamics (2016).
[45]
Yizhak Marcus “The isothermal compressibility and surface Tension product of room temperature ionic liquids” J. Chem. Thermodynamics 124 149–152 (2018).
[46]
S. M. Hossein “Density and isothermal compressibility of ionic liquids from perturbed hard-spherechain equation of state” Journal of Molecular Liquids 174 52–57 (2012).
[47]
F. M. Gaciño, T. Regueira, M. J. P. Comuñas, L. Lugo, J. Fernández, “Density and isothermalcompressibility for two trialkylimidazolium-based ionic liquids at temperatures from (278 to 393) K and up to 120 MPa,” J. Chem. Thermodynamics (2014).
[48]
M. M. Martynyuk, R. Balasubramanian, Int. J. Thermophys., 16 (2), 533–543 (1995).
[49]
R. Balasubramanian, High Temp.-High Press, 34, 335 (2002).
[50]
R. Balasubramanian, Int. J. Thermophys., 24, 201-206 (2003).
[51]
R. Balasubramanian, J. Chem., Eng. Jpn, 37, 1415 (2004).
[52]
R. Balasubramanian, Physica B, 381, 128 (2006).
[53]
R. Balasubramanian, Int. J. Thermophys., 27, 1494-1500 (2006).
[54]
R. Balasubramanian, J. Nucl. Mat., 366, 272 (2007).
[55]
R. Balasubramanian, Asia-Pacific J. Chem. Eng., 3, 90 (2008)
[56]
R. Balasubramanian, J. of Molecular Liquids, 151, 130-133 (2010)
[57]
R. Balasubramanian, Thermochimica Acta, 566, 233-237 (2013).
[58]
Balasubramanian Ramasamy, Kowsarbanu Abdul Jaffar, Ramesh Arumugam. “Enthalpy of Vaporization of Fluid Alkali Metals at High Temperatures” Open Science Journal of Modern Physics. Vol. 5, No. 2, pp. 24-31 (2018).
[59]
Coefficient of compressibility- AMS Glossary A Metsoc. org. Retrieved 3 may 2017.
[60]
Isothermal compressibility of gases” petrowiki. org. Retrieved 3 may 2017.
[61]
Filippov L. P,”Estimation of ThermophysicalPropertics of Liquids and Gases”, Energoatomizdat, Moscow, 55 (1988).
[62]
R. Balasubramanian, Ph. D Thesis, Russian Peoples’Friendship University, Moscow, Russia (1993).