The alkali metals are typical metals. The characteristic properties of alkali metals prompt the investigation of the structure and interaction at the molecular level. Moreover, the alkali metals have high heat of vaporization, high thermal conductivity, low viscosity and a wide range of liquid densities. This makes them good heat transfer fluids in reactors operating at high temperature and at high-energy rate. These facts underscore the scientific and technological significance of the study of the thermodynamic properties of fluid alkali metals. Sound speed is one of the characteristic properties of fluids, the experimental determination of the sound speed in fluid alkali metals, particularly at high temperatures, encounters severe difficulties due to the fact that the alkali metals are highly reactive at high temperatures. Hence, arises the necessity for theoretical study of the sound speed in fluid alkali metals. In this work, the sound speed in fluid alkali metals has been determined based on the three parameters generalized van der Waals equation of state, over a wide range of temperatures from the boiling point to the critical point. With the increase in temperature, sound speed in fluid alkali metals decreases. In the temperature range from the boiling point to 0.9TC, the sound speed in fluid alkali metals has a parabolic dependence on the temperature with TC as the critical temperature. In the temperature range from 0.9TC to TC, the sound speed in fluid alkali metals has a linear dependence on temperature with a small negative slope. As the generalized van der Waals equation of state accurately determines the thermophysical properties of alkali metals in wide a range of temperatures from boiling point to critical point, the obtained data on the sound speed in fluid alkali metals may be considered to be reliable.
Alkali Metals, Sound Speed, Equation of State
[1]
A. A. Likal'ter, H. Schneidenbach, Physica A, 293, 3-4 (2000).
[2]
M. H. Ghatee, M. Bahadori, J. Phys. Chem. B 105, 11256 (2001).
[3]
W. C, Pilgrim, S. Hosokawa, C. Morkel, Contrib. PlasmaPhys., 41, 283 (2001).
[4]
H. Eslami, S. Sheikh, A. Boushehri, HighTemp.-High Press, 33, 237 (2001).
[5]
H. Eslami, S. Sheikh, A. Boushehri, HighTemp.-High Press, 33, 725 (2001).
[6]
A. A. Likal'ter, H. Hess, Schneidenbach, Phys. Scripta, 66, 89 (2002).
[7]
F. Hensel, W. C. Pilgrim, Contrib. Plasma Phys., 43, 306 (2003).
[8]
L. Maftoon-Azad, A. Boushehri, Int. J. Thermophysics, 25, 893 (2004).
[9]
V. Rogankov, T. Bedrova, VisnykLviv Univ. Ser. Physics, 38, 197 (2005).
[10]
E. K. Goharshadi, A. R. Boushehri, J. Nucl. Mat., 348, 40 (2006).
[11]
K. Matsuda, M. Inui, K. Tamura, Sci, Techn. Adv. Mat., 7, 483 (2006).
[12]
F. Mozaffari, H. Eslami, A. Boushehri, Int. J. Thermophys., 28, 1 (2006).
[13]
O. M. Krasilnikow, FizikaMetalov IMetalovedenie, 103, 306 (2007).
[14]
O. D. Zhakhrova, A. M. Semenov, Teplofiz. Vys. Temp., 46, 59 (2008).
[15]
L Maftoon-Azad, H. Eslami, A. Boushehri, Fluid Phase Equilbria, 263, 1 (2008).
[16]
G. G. N. Angilella, N. H. March, R. Pucci, Phys. Chem. Liq., 46, 86 (2008).
[17]
LA. Blagonravov, Teplofiz. Vys Temp., 46, 680 (2009).
[18]
N. Farzi, R. Srfari, F. Kermanpour, J. MolLiq., 137, 159 (2009).
[19]
D. N. Kagan, G. A. Krechetova, E. E. Shpil'rain, HighTemp. 48, 506-510 (2010).
[20]
V. A. Krashaninin, A. A. Yur'ev, E. A. Yur'ev, Russian Metallurgy, 2011, 709-714 (2011).
[21]
N. E. Dubinin, A. A. Yurgev, N. A. Vatolin, J. of Structural Chem., 53, 468-475 (2012).
[22]
V. A. Krashaninin, N. E. Dubinin, N. A. Vatolin, Doklady Phys., 58, 339-342 (2013).
[23]
V. I. Rachkov, M. N. Amol'dov, A. D. Efanov, S. G. Kalyakin, F. A. Kozlov, N. I. Loginov, Yu. I. Orlov, A. P. Sorokin, Thermal Engineering, 61, 337-347 (2014).
[24]
D. K. Belashchenko, Russian J. of Physics chem. A, 89, 2051 –2063 (2015).
[25]
A. V. Mokshin, R. M. Khusnutdinow, A. R. Akhmerova, A. R. Musabirova, JETP Letters, 106, 366-370 (2017).
[26]
V. A. Krashaninin, N. E. Dubinin, AcademicianN. A. Vatolin, Doklady Phys., 58, 339-342 (2013).
[27]
Zhanjiang, PR. China, J. of Material Science & Engineering, 6, 349 (2017).
[28]
Annette Heinzel, WolfagangHering, JurgenKonys, Luca Marocco, KarstenLitfin, Georg Muller, Julio Pacio, CarstenSchroer, RobertStieglitz, Leonid Stoppel, AlfonsWeisenburger, Thomas Wetzel, Technology, 5, 1026- 1036 (2017).
[29]
Rajesh C. Malan, Aditya M. Vora, J. of Nano – and Electronic Physics, 10, 1-4 (2018).
[30]
J. K. Fink and L. Leibowitz “Thermodynamic and TransportPropertiesof Sodium Liquid and Vapor” Chemical TechnologyDivision, Argonne National Laboratory140-144 (1995).
[31]
W. Marczak, “Water as a standared measurements of speed of soundin liquids”, the Journal of the Acoustical Society of America, Vol 102, NO. 1, 2776-2779, (1997).
[32]
Isao Yokoyama et al., “Temperature dependence of sound velocity and self- di!usioncoefficient in liquid alkali metals: a hard-sphere description” Physica B 293 338-342 (2001).
[33]
A. R. H. Goodwin, K. N. Marsh, W. A. Wakeham “Measurement of the ThermodynamicProperties of Single Phases”238-311 (2003).
[34]
J P Martin Trusler “The Speed of Sound and Derived Thermodynamic Properties of Compressed Liquids” (2007).
[35]
S. G. Yemelynanov, V. M. Polunin, A. M. Storozhenko et al “Sound Speed in non-uniformly magnetized magnetic fluid” Magnetohydrodynamics, Vol. 47, No. 1, 29-31 (2011).
[36]
K R. K. Ameta, “Comparative study of density, sound velocity and refractive index for phosphates aqueous systems“J. Chem Thermodynamics (60) 159-168 (2013).
[37]
Roberto Maria Gavioso, “Speed of sound in fluids” AIA-DAGA (2013) nder microgravity conditions” Physics of Plasmas (1994-present) 22, 023701 (2015).
[38]
D. I. Zhukhovitskii, V. E. Fortov et al., “Measurement of the speed of sound by observation of the Mach cones in a complexplasma under microgravity conditions” Physics of Plasmas (1994-present) 22, 023701 (2015).
[39]
I. A. Shabanova, A. M. Storozhenko, V, M, Polunin “Determination of Sound Speed in a magnetic fluid using Acoustomagnetic effect” International Journal of Applied Engineering Research Vol. 11, No 23, 11171-11175 (2016).
[40]
P. Kiełczyńskia et al., “Speed of Sound in Liquids at High Pressure” Institute of Fundamental Technological Research, Polish Academy of Sciences, (5B) 02-106.
[41]
Vladimir Kirtskhalia, “Correct Definition of Sound Speed and Its Consequences in Tasks of Hydrodynamics” Hindawi Publishing Corporation Journal of Fluids (2016).
[42]
Blake T. Sturtevant, Cristian Pantea et al., “Measured sound speeds and acoustic nonlinearity parameter in liquid water up to523 K and 14 MPa” AIP Advances 6, 075310 (2016).
[43]
P A Oliveira et al “Speed of sound as a function of temperature forultrasonic propagation in soybean oil” 733 (2016).
[44]
N. A. Azman, S. B. Abd Hamid “Determining the Time of Fight and Speed of Sound on Different types of Edible Oil” IOP Conf. Ser.: Mater. Sci. Eng. 260, 012034 (2017).
[45]
Marzena Dzida, Edward Zorebski, Michel Zorebski, Monika Zarska et al., “Speed of Sound and Ultrasound Absorption in Ionic Liquids” Chemical Reviews, Vol. 117, Issue 5, 3883- 3929, (2017).
[46]
Frederic Decremps, Simon Ayrinhac, Michel Gauthier, Daniele Antonangeli, Marc Morand et al. “Sound velocity and equation of state of liquid Cesium at high pressure and high temperature”. Physical Review B: Condensed matter and materials physics, American Physical Society, Vol 98, No. (18), (2018).
[47]
Gert Jan van Groenestijn, Nicole Meulendijks, Renz van Ee, Arno Volker et al., “Qualification of an Ultrasonic Instrument for Real- Time Monitoring of Size and Concentration of Nanoparticles during Liquid Phase Bottom-Up Synthesis”, Applied Sciences, Vol. 8, 1064- 1075 (2018).
[48]
J. V ille, R. Saint-Jalm, E. Le Cerf, M. Aidelsburger et al., “Sound Propagation in a Uniform Superfluid Two- Dimensional Bose Gas”, arXiv: 1804.04037 v1 [cond-mat. grant gas] April (2018).
[49]
M. M. Martynyuk, R. Balasubramanian, Int. J. Thermophys., 16 (2), 533–543 (1995).
[50]
R. Balasubramanian, High Temp.-High Press, 34, 335 (2002).
[51]
R. Balasubramanian, Int. J. Thermophys., 24, 201-206 (2003).
[52]
R. Balasubramanian, J. Chem., Eng. Jpn, 37, 1415 (2004).
[53]
R. Balasubramanian, Physica B, 381, 128 (2006).
[54]
R. Balasubramanian, Int. J. Thermophys., 27, 1494-1500 (2006).
[55]
R. Balasubramanian, J. Nucl. Mat., 366, 272 (2007).
[56]
R. Balasubramanian, Asia-Pacific J. Chem. Eng., 3, 90 (2008).
[57]
R. Balasubramanian, J. of Molecular Liquids, 151, 130-133 (2010).
[58]
R. Balasubramanian, ThermochimicaActa, 566, 233-237 (2013).
[59]
Balasubramanian Ramasamy, Kowsarbanu Abdul Jaffar, Ramesh Arumugam. Enthalpy of Vaporization of Fluid Alkali Metals at High Temperatures. Open Science Journal of Modern Physics. Vol. 5, No. 2, 2018, pp. 24-31
[60]
Dean, E. A. “Atmospheric Effect on the speed of sound” (http: handle.dtic.mil/100.2/ADA076060) Technical report of Defense Information center (August 1979).
[61]
U. S Standard atmosphere, 1976. U. S. Government Printing Offoice. Washington. D. C. 1976.
[62]
A B Wood, A Textbook of sound (Bll. London, 1946).
[63]
FilippovL. P,”Estimation of Thermophysical Propertics of Liquids and Gases”, Energoatomizdat, Moscow, 55 (1988).
[64]
R. Balasubramanian, Ph. D Thesis, Russian Peoples ’Friendship University, Moscow, Russia (1993).