Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
Internal Energy Change in the Liquid – Vapor Phase Transition of Alkali Metals
Current Issue
Volume 5, 2018
Issue 6 (December)
Pages: 91-98   |   Vol. 5, No. 6, December 2018   |   Follow on         
Paper in PDF Downloads: 33   Since Feb. 13, 2019 Views: 924   Since Feb. 13, 2019
Authors
[1]
Balasubramanian Ramasamy, Department of Physics, Arignar Anna Government Arts College, Namakkal, India.
[2]
Ramesh Arumugam, Department of Physics, Arignar Anna Government Arts College, Namakkal, India.
[3]
Kowsarbanu Abdul Jaffar, Department of Physics, Arignar Anna Government Arts College, Namakkal, India.
Abstract
The alkali metals are typical metals. They exhibit well characterized homologous behavior. Alkali metals have complicated structure and molecular interaction. These characteristic properties of alkali metals prompt the investigation of the structure and interaction at the molecular level. Moreover, the alkali metals have high heats of vaporization, high thermal conductivity, low viscosity and a wide range of liquid densities. This makes them good heat transfer fluids in reactors operating at high temperature and at high-energy rate. These facts underscore the scientific and technological significance of the study of the thermodynamic properties of fluid alkali metals. One of the commonly employed approaches in the study of thermodynamic properties of substances is the development of accurate equations of state. The known two-parameter van der Waals equation of state does not precisely describe the thermodynamic properties of fluid alkali metals. To improve its accuracy, a third parameter is introduced in the expression for the molecular pressure. The newly introduced substance-specific parameter is determined through experimental data on the vapor-liquid critical-point parameters and it is found to be a thermodynamic similarity parameter for alkali metals. The three-parameter generalized van der Waals equation of state is employed to determine the internal energy change of fluid alkali metals in the range of temperatures from the boiling point to the critical point. The knowledge of the internal energy change is essential in the study of liquid-vapor phase transition of fluid alkali metals. However, the experimental determination of the internal energy change of fluid alkali metals, particularly at high temperatures, encounters severe difficulties due to the fact that the alkali metals are highly reactive at high temperatures. Hence arises the necessity for theoretical study of the internal energy change of fluid alkali metals. In this work, the internal energy change of fluid alkali metals, in the range of temperatures from the boiling point to the critical point, has been determined through the three-parameter generalized van der Waals equation of state. As the generalized van der Waals equation of state describes the thermodynamic properties of fluid alkali metals in the temperature range from boiling point to critical point, the values of the internal energy change in the liquid-vapor transition of fluid alkali metals determined on the basis of the generalized van der Waals equation of state may be considered to be the reliable and recommended values.
Keywords
Alkali Metals, Internal Energy, Liquid-Vapor Phase Transition, Equation of State
Reference
[1]
A. A. Likal'ter, H. Schneidenbach, Physica A, 293, 3-4 (2000).
[2]
M. H. Ghatee, M. Bahadori, J. Phys. Chem. B 105, 11256 (2001).
[3]
W. C, Pilgrim, S. Hosokawa, C. Morkel, Contrib. PlasmaPhys., 41, 283 (2001).
[4]
H. Eslami, S. Sheikh, A. Boushehri, High Temp.-High Press, 33, 237 (2001).
[5]
H. Eslami, S. Sheikh, A. Boushehri, High Temp.-High Press, 33, 725 (2001).
[6]
A. A. Likal'ter, H. Hess, Schneidenbach, Phys. Scripta, 66, 89 (2002).
[7]
F. Hensel, W. C. Pilgrim, Contrib. Plasma Phys., 43, 306 (2003).
[8]
L. Maftoon-Azad, A. Boushehri, Int. J. Thermophysics, 25, 893 (2004).
[9]
V. Rogankov, T. Bedrova, VisnykLviv Univ. Ser. Physics, 38, 197 (2005).
[10]
E. K. Goharshadi, A. R. Boushehri, J. Nucl. Mat., 348, 40 (2006).
[11]
K. Matsuda, M. Inui, K. Tamura, Sci, Techn. Adv. Mat., 7, 483 (2006).
[12]
F. Mozaffari, H. Eslami, A. Boushehri, Int. J. Thermophys., 28, 1 (2006).
[13]
O. M. Krasilnikow, FizikaMetalov I Metalovedenie, 103, 306 (2007).
[14]
O. D. Zhakhrova, A. M. Semenov, Teplofiz. Vys. Temp., 46, 59 (2008).
[15]
L Maftoon-Azad, H. Eslami, A. Boushehri, Fluid Phase Equilbria, 263, 1 (2008).
[16]
G. G. N. Angilella, N. H. March, R. Pucci, Phys. Chem. Liq., 46, 86 (2008).
[17]
LA. Blagonravov, Teplofiz. Vys Temp., 46, 680 (2009).
[18]
N. Farzi, R. Srfari, F. Kermanpour, J. Mol Liq., 137, 159 (2009).
[19]
D. N. Kagan, G. A. Krechetova, E. E. Shpil'rain, High Temp. 48, 506-510 (2010).
[20]
V. A. Krashaninin, A. A. Yur'ev, E. A. Yur'ev, Russian Metallurgy, 2011, 709-714 (2011).
[21]
N. E. Dubinin, A. A. Yurgev, N. A. Vatolin, J. of Structural Chem., 53, 468-475 (2012).
[22]
V. A. Krashaninin, N. E. Dubinin, N. A. Vatolin, Doklady Phys., 58, 339-342 (2013).
[23]
V. I. Rachkov, M. N. Amol'dov, A. D. Efanov, S. G. Kalyakin, F. A. Kozlov, N. I. Loginov, Yu. I. Orlov, A. P. Sorokin, Thermal Engineering, 61, 337-347 (2014).
[24]
D. K. Belashchenko, Russian J. of Physics chem. A, 89, 2051 – 2063 (2015).
[25]
A. V. Mokshin, R. M. Khusnutdinow, A. R. Akhmerova, A. R. Musabirova, JETP Letters, 106, 366-370 (2017).
[26]
V. A. Krashaninin, N. E. Dubinin, Academician N. A. Vatolin, Doklady Phys, 58, 339-342 (2013).
[27]
Zhanjiang, PR. China, J. of Material Science & Engineering, 6, 349 (2017).
[28]
Annette Heinzel, Wolfagang Hering, JurgenKonys, Luca Marocco, Karsten Litfin, Georg Muller, Julio Pacio, Carsten Schroer, Robert Stieglitz, Leonid Stoppel, Alfons Weisenburger, Thomas Wetzel, Technology, 5, 1026-1036 (2017).
[29]
Rajesh C. Malan, Aditya M. Vora, J. of Nano – and Electronic Physics, 10, 1-4 (2018).
[30]
M. M. Martynyuk, R. Balasubramanian, Int. J. Thermophys., 16 (2), 533–543 (1995).
[31]
R. Balasubramanian, High Temp.-High Press, 34, 335 (2002).
[32]
R. Balasubramanian, Int. J. Thermophys., 24, 201-206 (2003).
[33]
R. Balasubramanian, J. Chem., Eng. Jpn., 37, 1415 (2004).
[34]
R. Balasubramanian, Physica B, 381, 128 (2006).
[35]
R. Balasubramanian, Int. J. Thermophys., 27, 1494-1500 (2006).
[36]
R. Balasubramanian, J. Nucl. Mat., 366, 272 (2007).
[37]
R. Balasubramanian, Asia-Pacific J. Chem. Eng., 3, 90 (2008).
[38]
R. Balasubramanian, J. of Molecular Liquids, 151, 130-133 (2010).
[39]
R. Balasubramanian, ThermochimicaActa, 566, 233-237 (2013).
[40]
Filippov L. P, “Estimation of Thermophysical Propertics of Liquids and Gases”, Energoatomizdat, Moscow, 55 (1988).
[41]
R. Balasubramanian, Ph.D Thesis, Russian Peoples’Friendship University, Moscow, Russia (1993).
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
CONTACT US
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
E-mail:
LET'S GET IN TOUCH
Name
E-mail
Subject
Message
SEND MASSAGE
Copyright © 2013-, Open Science Publishers - All Rights Reserved