Enhancement of Coercivity and Maximum Energy Product of Annealed Nd-Fe-B Nanocomposite Alloys
[1]
Palash Chandra Karmaker, Department of Physics, Jahangirnagar University, Savar, Dhaka, Bangladesh; Materials Science Division, Atomic Energy Center, Dhaka, Bangladesh; Department of EEE, University of Information Technology & Sciences, Dhaka, Bangladesh.
[2]
Mohammad Obaidur Rahman, Department of Physics, Jahangirnagar University, Savar, Dhaka, Bangladesh.
[3]
Nguyen Huy Dan, Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Vietnam.
[4]
Samia Islam Liba, Materials Science Division, Atomic Energy Center, Dhaka, Bangladesh.
[5]
Per Nordblad, Solid State Physics, Department of Engineering Science, Uppsala University, Uppsala, Sweden.
[6]
Sheikh Manjura Hoque, Materials Science Division, Atomic Energy Center, Dhaka, Bangladesh.
Nanocomposite, Soft and Hard Phase, Coercivity, Maximum Energy Product, Remanent Ratio, Crystallization Temperature
[1]
Yamasaki, M., Hamano, M. and Kobayashi, T. (2002). Mössbauer Study on the Crystallization Process of α-Fe/Nd2Fe14B type Nanocomposite Magnet Alloy. Materials Transactions, vol. 43, pp. 2885-2889.
[2]
Kneller, E. F. and Hawig, R. (1991). The Exchange-Spring Magnet: A New material principle for permanent magnets. IEEE Transactions on Magnetics, vol. 27, pp. 3588-3599.
[3]
Girt, E., Krishnan, K. M., Thomas, G., Girt, E. and Altouniam, Z. (2001). Coercivity limits and mechanism in nanocomposite Nd-Fe-B alloys. Journal of Magnetism and Magnetic Materials, vol. 231, pp. 219-230.
[4]
Withanawasam, L., Murphy, A. S., Hadjipanayis, G. C. and Krause, R. F. (1994). Nanocomposite R2Fe14B/Fe exchange coupled magnets. Journal of Applied Physics, vol. 76, pp. 7065-7067.
[5]
Hoque, S. M., Hakim, M., Khan, F. A. and Dan, N. H. (2007). Effect of Tb substitution on the magnetic properties of exchange-biased Nd2Fe14B/Fe3B. Journal of Materials Science, vol. 42, pp. 9415-9420.
[6]
Sepehri-Amin, H., Liu, J., Ohkubo, T., Hioki, K., Hattori, A. and Hono, K. (2013). Enhancement of coercivity of hot-deformed Nd–Fe–B anisotropic magnet by low-temperature grain boundary diffusion of Nd60Dy20Cu20 eutectic alloy. Scripta Materialia, vol. 69, pp. 647-650.
[7]
Sun, J. B., Bu, S. J., Cui, C. X., Ding, H. W., He, C. H., Zhang, L. and Han, X. W. (2013). A new Sm–Co-type hard magnetic alloy with anamorphous based nanocrystalline microstructure. Intermetallics, vol. 35, pp. 82-89.
[8]
Hasiak, M., Miglierini, M., Yamashiro, M. Y., Ciurzynska, W. H., Yanai, T. and Fukunaga, H. (2003). Microstructure and Magnetic properties of nanocrystalline Fe-Zr-TM-B-Cu (TM=Nb or Mn) alloys. Journal of Magnetism and Magnetic Materials, vol. 254, pp. 457-459.
[9]
Lou, L., Hou, F. C., Wang, Y. N., Cheng, Y., Li, H. L., Li, W., Guo, D. F., Li, X. H. and Zhang, X. Y. (2014). Texturing for bulk alpha-Fe/Nd2Fe14B nocomposites with enhanced magnetic properties. Journal of Magnetism and Magnetic Materials, vol. 352, pp. 45-48.
[10]
Zhou, C. and Pinkerton, F. E. (2014). Magnetic hardening of CeFe12-xMox and the effect of nitrogenation. Journal of Alloys and Compound, vol. 583, pp. 345-350.
[11]
Pengyue, Z., Minxiang, P., Hongliang, G., Ming, Y. and Weiqiang, L. (2013). Study on magnetization reversal behavior for annealed Nd2Fe14B/α-Fe nancomposite alloys. Journal of Rare Earths, vol. 31, pp. 759-764.
[12]
Sabbaghizadeh, R. and Hashim, M. (2013). Effects of heat treatment on the magnetic properties of melt-spun Nd6Pr1Fe76B12Ti4C1Co3 nanocomposite ribbons. Electronic Materials Letters, vol. 9, pp. 115-118.
[13]
Tang. X., Chen, R., Li, M., Jin, C., Yin, W., Don Lee, D. and Yan, A. (2018). Grain boundary diffusion behaviors in hot-deformed Nd2Fe14B magnets by PrNd-Cu low eutectic alloys. Journal of Magnetism and Magnetic Materials, vol. 445, pp. 66–70.
[14]
Grigoras, M., Lostun, M., Urse, M., Borza, F., Chiriac, H. and Lupu, N. (2018). Nd-Fe-B/Sm-M/Nd-M (M=Fe, Co, Ti, Cu, Zr) hybrid magnets with improved thermal stability. Journal of Magnetism and Magnetic Materials, vol. 447, pp. 68-72.
[15]
Imaoka, N., Kakimoto, E., Takagi, K., Ozaki, K. Tada, M., Nakagawa, T. and Abe, M. (2016). Exchange coupling between soft magnetic ferrite and hard ferromagnetic Sm2Fe17N3 in ferrite/Sm2Fe17N3 composites. AIP Advances, vol. 6, pp. 056022.
[16]
Saito, T., Nozaki, S. and Nishio-Hamane, D. (2018). Improvement of coercivity in Nd-Fe-B nanocomposite magnets. Journal of Magnetism and Magnetic Materials, vol. 445, pp. 49–52.
[17]
Yang, F., Sui, Y., Chen, C., Ye, S., Li, P., Guo, Z., Paley, V. and Volinsky, A. A. (2018). Sulfur doping effect on microstructure and magnetic properties of Nd-Fe-B sintered magnets. Journal of Magnetism and Magnetic Materials. vol. 446, pp. 214-220.
[18]
Zhou, Q., Zhang, J. S., Jiao, D. L., Z. W. and Grenechec, J. M. (2017). A nanocomposite structure in directly cast NdFeB based alloy with low Nd content for potential anisotropic permanent magnets. Materials & Design, vol. 117, pp. 326-331.
[19]
Xie, J., Yuan, C., Luo, Y., Yang, Y., Hu, B., Yu, D., and Yan, W. (2018). Coercivity enhancement and thermal-stability improvement in the melt-spun NdFeB ribbons by grain boundary diffusion. Journal of Magnetism and Magnetic Materials, vol. 446, pp. 210-213.
[20]
Yang, Y., Walton, A., Sheridan, R., Güth, K., Gau, R., Gutfleisch, O., Buchert, M., Steenari, M. B., Gerven, T. V., Jones, P. T. and Binnemans, K. (2017). REE Recovery from End-of-Life NdFeB Permanent Magnet Scrap: A Critical Review. Journal of Sustainable Metallurgy, vol. 3, pp. 122–149.