Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
Density Dependent Exchange Correlation Potentials Derived from High Accurate First-Principles Calculation of AF2 (A=Sr, Ca, and Ba) Fluorine: GGA via mBJ-TB-GGA Approaches
Current Issue
Volume 5, 2018
Issue 4 (August)
Pages: 57-71   |   Vol. 5, No. 4, August 2018   |   Follow on         
Paper in PDF Downloads: 29   Since Sep. 1, 2018 Views: 1094   Since Sep. 1, 2018
Authors
[1]
Mamoun Lakhdar, Faculty of Sciences, Department of Physics, Djillali Liabès University UDL, Sidi Bel-Abbès, Algeria.
[2]
Hamdad Noura, Faculty of Technology, Djillali Liabès University UDL, Sidi Bel-Abbès, Algeria.
Abstract
The alkaline earth fluorides are promising candidates for solid state materials, they are characterized by their wide gaps. In addition it possesses several uniques properties such as: high resistivity, an ionic conductivity and intrinsic optical properties. The ground states properties systems of SrF2, CaF2 and BaF2 fluorine in the fuorite phase (Fm-3m) are theoretically investigated and reported within different approachs by combining available experimental measurements from the current first-principles calculations. A new potential energy function of fluorine materials has been determined via the density functional theory DFT with the implementation of generalized gradient approximation (GGA) and Modified Becke-Johnson (TB-mBJ) as coupled with (GGA) approach. The calculated equilibrium lattice constants and the bulk modulus are in good agreement with the experimental results. All the fluorines system investigated here are found to be an indirect band gap insulator. These materials are good candidate for several technological application: many optical devices are made from fluoride or are coated with fluoride films.
Keywords
Fluorines, GGA, GGA-Modified Berck Johnson, Insulator
Reference
[1]
H. Shi, L. Chang, R. Jia, R. I. Eglitis, Computational Materials Science 79, 527 (2013).
[2]
R. Jia, H. Shi, G. Borstel, Computational Materials Science 43, 980 (2008).
[3]
N. H. de Leeuw, T. G. J. Cooper, Materials Chemistry 13, 93 (2003).
[4]
J. Barth, R. L. Johnson, M. Cardona, D. Fuchs, A. M. Bradshaw, Physical Review B 41, R3219 (1990).
[5]
M. Verstraete, X. Gonze, Physical Review B 43, 195123 (2003).
[6]
Hideaki Fujitani, Surface Science 268, 265 (1992).
[7]
G. Dražic, S. Kobe, E. Sarantopoulou, Z. Kollia, A. C. Cefalas, Applied Surface Science, 226, 120 (2004).
[8]
V. Kanchana, G. Vaitheeswaran, M. Rajagopalan, Physica B 328, 283 (2003).
[9]
G. Q. Huang, L. F. Chen, Nuclear Instruments and Methods in Physics Research B 152, 232 (1999).
[10]
Chao-shu Shia, Thomas Kloiberb and Georg Zimmererb, Journal of Luminescence 48, 597 (1991).
[11]
Chaoshu Shi, T. Kloiber and G. Zimmerer, J. Lumin. 40, 189 (1988).
[12]
P. W. O. Nyawere a, b, c, n, S. Scandolo c, d, N. W. Makau a, G. O. Amolo, Solid State Communications 179, 25 (2014).
[13]
Hai Xiao, Jamil Tahir-Keli, et al., J. Phys. Chem. Lett. 2 212 (2011).
[14]
G. KiSnig, A. Lehmann, K. H. Rieder, Surface Science 331, 1430 (1995).
[15]
J. M. Phillips, Mater. Res. Soc. Symp. Proc. 71, 97 (1986).
[16]
P. D. Townsend, P. J. Chandler, L. Zhang, Optical Effects of Ion Implantation, Cambridge University Press, Cambridge, UK, (Chapters 5–7). (1994).
[17]
I. Bányász, S. Berneschi, N. Q. Khánh, T. Lohner, K. Lengyel, M. Fried, Á. Péter, P. Petrik, Z. Zolnai, A. Watterich, G. Nunzi-Conti, S. Pelli, G. C. Righini, Nuclear Instruments and Methods in Physics Research B 286, 80 (2012).
[18]
V. Petit, P. Moretti, P. Camya, J. L. Doualan, R. Moncorg, Active waveguides produced in Yb3+: CaF2 by H+ implantation for laser applications, J. Alloy. Compd. 451, 68 (2008).
[19]
Keiko Aono, Makoto Kumagai, Kunihiro Kashiwagi, Youichi Murayama, Masaya Iwaki, Ion-beam-induced white luminescence of CaF2 implanted with both Eu and Tb ions, Jpn. J. Appl. Phys. 32, 3851 (1993).
[20]
B. E. Umirzakov, T. S. Pugacheva, A. T. Tashatov, D. A. Tashmukhamedova, Nuclear Instruments and Methods in Physics Research B 166, 572 (2000).
[21]
J. S. Wang, C. L. Ma, D. Zhou, Y. S. Xu, M. Z. Zhang, W. Gao, H. Y. Zhu, Q. L. Cui, Journal of Solid State Chemistry 186, 231 (2012).
[22]
C. Feldmann, M. Roming, K. Trampert, Small 2, 1248 (2006).
[23]
P. Gao, Y. Xie, Z. Li, Eur. J. Inorg. Chem. 16, 3261 (2006).
[24]
J. A. Campbella, J.-P. Laval, M.-T. Fernandez-Diazc, M. Foster, Journal of Alloys and Compounds 323, 111 (2001).
[25]
D. G. Cahill, R. O. Pohl, Phys. Rev. B 39, 10477 (1989).
[26]
S. K. Kazanskii, JETP Lett. 41, 224 (1985).
[27]
S. A. FitzGerald, J. A. Campbell, A. J. Sievers, Phys. Rev. Lett. 73, 3105 (1994).
[28]
Elaine Morris, Tom Groy, Kurt Leinenweber, Journal of Physics and Chemistry of Solids 62, 1117 (2001).
[29]
[von K, F. Seifert Strukturumwandlungen von Halogeniden des Types AX2 unter hoÈheren DruÈken, Ber. Bunsenger. Physik Chem. 70, 1041 (1966).
[30]
G. A. Kourouklis, E. Anastassakis, Phys. Rev. B 34, 1233 (1986).
[31]
E. Francisco, M. A. Blanco, G. Sanjurjo, Phys. Rev. B 63, 094107 (2001).
[32]
V. Kanchana, G. Vaitheeswaran, M. Rajagopalan, Physica B 328, 283 (2003).
[33]
A. M. Hao, X. C. Yang, J. Li, W. Xin, S. H. Zhang, X. Y. Zhang, R. P. Liu, Chin. Phys. Lett. 26, 077103 (2009).
[34]
S. M. Dorfman, F. Jiang, Z. Mao, A. Kubo, Y. Meng, V. B. Prakapenka, T. S. Duffy, Phys. Rev. B 81, 174121 (2010).
[35]
W. Kohn and L. J. Sham, Phys. Rev, 140, 1133 (1965).
[36]
P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).
[37]
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[38]
P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka and J. Luitz, WIEN2k, K. Schwarz, Techn. University at Wien, Austria, 3, 9501031 (2001).
[39]
Ceperly DM, Alder BJ. Phys Rev Lett B 23, 5048, (1980).
[40]
J. P. Perdew, Y. Wang, Phys. Rev. 45, 13244, (1992).
[41]
J. P. Perdew and K. Burke, Int. J. Quantum Chem. 57, 309 (1996).
[42]
Perdew JP, Zunger A. Phys Rev B 23, 5048, (1981).
[43]
J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
[44]
J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pedreson, D. J. Singh and C. Fiolhais, Phys. Rev. B 43, 6671 (1992).
[45]
J. P. Perdew, S. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865, (1996).
[46]
K. Schwarz, P. Blaha, G. K. H. Madsen, Comp. Phys. Commun. 147, 71 (2002).
[47]
D. J. Singh, Phys. Rev. B 43 6388 (1991).
[48]
R. Laskowski, P. Blaha, Phys. Rev. B, 81, 075418 (2010).
[49]
Dudarev, S. L., Savrasov, S. Y., Humphreys, C. J., Sutton, P. Phys. Rev. B 57, 1505 (1998).
[50]
J. P. Perdew and Y. Wang, Phys. Rev. B 33, 8800 (1986).
[51]
J. P. Perdew in ‘Electronic Structure of Solids’, Academie Verlag, Berlin, 11 (1991).
[52]
Tran F, Blaha P. Phys Rev Lett 102, 226401, (2009).
[53]
A. D. Becke and E. R. Johnson, J. Chem. Phys. 124, 221101 (2006).
[54]
Terakura, K., Oguchi, T., Williams, A., Kübler, J. Phys. Rev. B 30, 4734 (1984).
[55]
H. J. Monkhorst, J. D. Pack, Phys. Rev. B 13, 5192 (1976).
[56]
F. D. Murnaghan, Proc. Natl. Acad. Sci. USA, 30, 5390 (1944).
[57]
T. c; Y. Fukuda, M. Kunitomo, K; Isodo, Phys. Rev. B 62, 579 (2000).
[58]
H. R. Soni, et al. J. Phys. Chem. Solids, 72, 934 (2011).
[59]
G. A. Samara, Phys. Rev. B 13, 4529 (1976).
[60]
M. Merawa, M. Llunell, R. Orlando, et al. Chem. Phys. Lett. 368, 7 (2003).
[61]
W. Hayes, Crystals with the Fluorite Structure, Clarendon Press, Oxford, (1974).
[62]
J. S. Wang et al. / Journal of Solid State Chemistry 186, 231 (2012).
[63]
A. M. Hao, X. C. Yang, J. Li, W. Xin, S. H. Zhang, X. Y. Zhang, R. P. Liu, Chin. Phys. Lett. 26, 077103 (2009).
[64]
M. M_eerawa et al. / Chemical Physics Letters 368, 7 (2003).
[65]
Janaf Thermodynamical Tables, J. Phys. Chem. Ref. Data (Suppl. 1), 14 (1985).
[66]
V. Kanchana et al. / Physica B 328, 283 (2003).
[67]
R. W. G. Wycoff, Crystal Structures, 2nd Edition, Vol. 1, Interscience Publishers, New York, (1982).
[68]
F. Fooladchang et.al./Physica B 427, 47 (2013).
[69]
T. Swanson, A. Tatge, Natl. Bur. Stand. (U.S.) Circ. 539, 69 (1953).
[70]
J. M. Leger, J. Haines, A. Atouf, O. Schuete, S. Hull, Phys. Rev. B 52, 13247 (1995).
[71]
V. Kanchana et al. / Journal of Alloys and Compounds 359, 66 (2003).
[72]
H. Shi et al. / Solid State Ionics 187, 1 (2011).
[73]
L. Gerward, J. S. Olsen, S. Steenstrup, S. Asbrink, A. Waskowska, J. Appl. Crystallogr. 25, 578 (1992).
[74]
A. Kanver, Phys. Rev. B 77, 224102 (2008).
[75]
C. R. A. Catlow, J. D. Commins, F. A. Germano, R. T. Harley, W. Hayes, J. Phys. C 11, 3197 (1978).
[76]
P. S. Ho, A. L. Ruoff, Phys. Rev. 161, 864 (1967).
[77]
R. J. Angel, J. Phys.: Condens. Matter 5, L141 (1993).
[78]
R. M. Hazen, L. W. Finger, J. Appl. Crystallogr. 14, 234 (1981).
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
CONTACT US
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
E-mail:
LET'S GET IN TOUCH
Name
E-mail
Subject
Message
SEND MASSAGE
Copyright © 2013-, Open Science Publishers - All Rights Reserved