Recognition of Thymine Attached Cryptand with Adenine Functionalized Amphiphiles: Syntheses and Monolayer Study at the Air-Water Interface
[1]
Bijay Sarkar, Department of Chemistry, IIT Kanpur, Kanpur, India; School of Medicine, University of Maryland Baltimore, Baltimore, USA.
[2]
R. A. Singh, Faculty of Science, Banaras Hindu University, Varanasi, India.
[3]
Tapas Makar, School of Medicine, University of Maryland Baltimore, Baltimore, USA.
[4]
P. K. Bharadwaj, Department of Chemistry, IIT Kanpur, Kanpur, India.
Three ligands containing thymine attached through propyl spacer to the N atom(s) of a laterally non-symmetric cryptand (L1-L3) and three 9-alkyladenine (A1-A3, alkyl chain lengths: C18, C20, C22) amphiphiles were synthesized and characterized. Monolayers of the amphiphiles and amphiphiles mixed with thymine-cryptands were studied at the air-water interface on a Langmuir Blodgett Trough; molecular recognition between the amphiphiles and thymine-cryptands at the air-water interface was demonstrated from the change in the patterns of the pressure-area isotherms. Multi-layer Langmuir-Blodgett (LB) films were deposited on quartz plates and studied microscopically.
Cryptand, Amphiphile, Molecular Recognition, Monolayers, Langmuir-Blodgett Film, Adenine, Thymine, Thin Film
[1]
Ulman, A. An Introduction to Ultrathin Films: from Langmuir-Blodgett to Self-Assembly, Academic Press, San Diego, CA, 1991. Choudhary, K; Kumar, J; Taneja, P; Gupta, R. K.; Manjuladevi, V. Liquid Crystals 2017, DOI:10.1080/02678292.2017.1306890
[2]
Ariga, K.; Yamauchi, Y.; Mori, T.; Hill, J. P. Adv. Mater. 2013, 13, 6477. Benito, J.; Sorribas, S.; Lucas, I.; Coronas, J.; Gascon, I. ACS Appl. Mater. Interfaces, 2016, 8, 16486.
[3]
Xin, Y.; Kong, X.; Zhang, X.; Lv, Z.; Du, X. Langmuir, 2012, 28, 11153.
[4]
Hizver, J.; Rozenberg, H.; Frolow, F.; Rabinovich, D.; Shakked, Z. PNAS 2001, 98, 8490.
[5]
Sessler, J. L.; Lawrence, C. M.; Jayawickramarajah, J. Chem Soc Rev. 2007, 36, 314.
[6]
Alberts, B.; Johnson, A.; Lewis, J. The Structure and Function of DNA in Molecular Biology of the Cell. 4th Ed; Garland Science; New York, NY, 2002.
[7]
Cheng, C.-C.; Chu, C.-W.; Huang J.-J.; Liao, Z.-S. J Mater. Chem. C, 2017, DOI: 10.1039/C7TC00693D.
[8]
Sarkar, B.; Mukhopadhyay, P.; Bharadwaj, P. K. Coord. Chem. Rev. 2003, 236, 1.
[9]
Liu, L.; Xia, D.; Klausen, L. H.; Dong, M. Int. J. Mol. Sci. 2014, 15, 1901.
[10]
Perez, J. M.; Josephson, L.; O'Loughlin, T.; Högemann, D.; Weisslede, R. Nat. Biotechnol. 2002, 20, 816.
[11]
Junhui, Z.; Hong, C.; Ruifu, Y. Biotechnol. Adv. 1997, 15, 43.
[12]
Miotke, L.; Barducci, M. C.; Astakhova, K. Chemosensors 2015, 3, 224.
[13]
Li, H.; LaBean, T. H.; Leong, K. M. Interface Focus 2011, 1, 702.
[14]
Drain, C. M.; Varotto, A.; Radivojevic, I. Chem. Rev. 2009. 109, 1630.
[15]
Raghunathan, K. G.; Bharadwaj, P. K. Tetrahedron Lett. 1992, 33, 7581.
[16]
Chand, D. K.; Bharadwaj, P. K. Inorg. Chem. 1996, 35, 3380.
[17]
Schall, O. F.; Gokel, G. W. J. Chem. Soc. 1994, 116, 6089.
[18]
Perrin, D. D.; Armarego, W. L. F.; Perrin, D. R. Purification of Laboratory Chemicals, 2nd ed.; Pergamon Press: Oxford, 1980.
[19]
Abraham, B. M.; Ketterson, J. B.; Miyano, K.; Kueny, A. J. Chem. Phys. 1981, 75, 3137.
[20]
Sarkar, B.; Gupta, R. K.; Singh, R. A.; Bharadwaj P. K. Bull. Mater. Sci. 2008, 31, 517.
[21]
Das, G., Ghosh, P., Bharadwaj, P. K., Singh, U., & Singh, R. A. Langmuir, 1997, 13, 3582.
[22]
Huang, J.; Liang, Y. Thin Solid Films 1998, 326, 217.
[23]
Huang, J.; Liang, Y. Thin Solid Films 1998, 325, 210.
[24]
Liu, L., Chen, M., Yang, J., Liu, S.-Z., Du, Z.-L. and Wong, W.-Y. J. Polym. Sci. A Polym. Chem., 2010, 48, 879.
[25]
Yoneyama, M.; Sugi, M.; Saito, M.; Ikegami, K.; Kuroda, S.-I.; Iizima, S. Jpn J. Appl. Phys., 1986, 25, 961.
[26]
Castro, A.; Swart, M.; Guerra, C. F. Phys. Chem. Chem. Phys., 2017, DOI: 10.1039/C7CP00397H
[27]
Gladilovich, V.; Uta Greifenhagen, U.; Sukhodolov, N.; Selyutin, A.; Singer, D.; Thieme, D.; Majovsky, P.; Shirkin, A.; Hoehenwarter, W.; Bonitenko, E.; Podolskaya, E.; Frolov, A. J Chromatogr. A, 2016, 1443, 21.