Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
Kinetics and Isotherms for Uranium (VI) Adsorption from Aqueous Solutions by Goethite
Current Issue
Volume 3, 2016
Issue 2 (April)
Pages: 6-12   |   Vol. 3, No. 2, April 2016   |   Follow on         
Paper in PDF Downloads: 94   Since Jul. 8, 2016 Views: 1711   Since Jul. 8, 2016
Authors
[1]
Salah Chegrouche, Algerian Atomic Energy Commission, Nuclear Research Centre of Draria, BP 43 Draria, Algiers, Algeria.
[2]
Abdelhamid Mellah, Algerian Atomic Energy Commission, Nuclear Research Centre of Draria, BP 43 Draria, Algiers, Algeria.
[3]
Mahfoud Barkat, Algerian Atomic Energy Commission, Nuclear Research Centre of Draria, BP 43 Draria, Algiers, Algeria.
[4]
Abderahmane Aknoun, Algerian Atomic Energy Commission, Nuclear Research Centre of Draria, BP 43 Draria, Algiers, Algeria.
Abstract
The objective of this study was to investigate the ability of a synthetic goethite to remove U(VI) from aqueous solutions. Goethite (α-FeOOH), which has a strong adsorption affinity for the uranyl ion (UO22+), was synthesized in our laboratory by Atkinson et al., method [1] and used as adsorbent. Characterization of this adsorbent proved crucial. Thus, several analytical techniques and characterization were used, including: X-ray diffraction XRD, Infrared spectroscopyIR and Thermogravimetry TG. Equilibrium isotherm studies were used to evaluate the maximum sorption capacity of goethite and the experimental results showed this to be 66.66 mg/g. The parameters that affect the uranium(VI) adsorption, such as shaking time, solution pH, and temperature, have also been investigated and optimized (shaking time 180 min, pH 6.0 and temperature 50°C). Equilibrium isotherm studies were used to evaluate the maximum sorption capacity of goethite and experimental results showed this to be 66.66 mg/g. The Freundlich, Langmuir, and Dubinin–Radushkevich (D–R) models have been applied and the data correlate well with Langmuir model and that the sorption is physical in nature (the activation energy Ea = 6.189 kJ/mol). The obtained optimal parameters were applied to real effluents containing uranium (VI). The findings show that the uranium (VI) removal percentage was 65.25%.
Keywords
Adsorption, Goethite, Uranium, Langmuir Model, Freundlich Model, Dubinin–Radushkevich Model
Reference
[1]
R. J. Atkinson, A. M. Posner, J. P. Quirk, Crystal nucleation in Fe(III) solutions and hydroxide gels, J. Inorg. Nucl. Chem. 30 (1968) 2375-2381.
[2]
K. W. Kim, J. T. Hyun, E. H. Lee, G. I. Park, K. W. Lee, M. J. Yoo, K. C. Song, J. K. Moon, Recovery of uranium from (U,Gd)O2 nuclear fuel scrap using dissolution and precipitation in carbonate media, J. Nucl. Mater, 418 (2011) 93-97.
[3]
E. A. Santos, A. C. Q. Ladeira, Recovery of uranium from mine waste by leaching with carbonate-based reagents, Environ, Sci. Technol, 45(2011) 3591–3597.
[4]
M. H. Khan, S. Shahida, A. Ali, Liquid-liquid extraction of uranium from nitric acid solution using di-n-butylsulfoxide in petroleum ether as extractant, Radiochim. Acta, 96 (2008) 35–40.
[5]
R. S. Praveen, P. Metilda, S. Daniel, T. Prasada Rao, Solid phase extractive preconcentration of uranium (VI) using quinoline-8-ol anchored chloromethylated polymeric resin beads, Talanta, 67 (2005) 960-967.
[6]
X. Liao, H. Ma, R. Wang, B. Shi, Adsorption of UO2+2 on tannins immobilized collagen fiber membrane, J. Membr. Sci, 243 (2004) 235–241.
[7]
A. Kilislioglu, G. Aras, Adsorption of uranium from aqueous solution on heat and acid treated sepiolites, Appl. Radiat. Isotopes, 68 (2010) 2016–2019.
[8]
E. M. Aieta, J. E. Singley, A. E. Trussell, K. W. Thorbjarnarson, M. J. McGuire, Radionuclides in Drinking Water: An Overview, J. Am. Water Works Assoc, 79 (1987) 144-152.
[9]
S. Chegrouche, A. Kebir, Study of ammonium uranyl carbonate re-extraction-crystallization process by ammonium carbonate, Hydrometallurgy, 28 (1992) 135-147.
[10]
N. Abdus-Salam, F. A. Adekola, The influence of pH and adsorbent concentration on adsorption of lead and zinc on a natural goethite, African Journal of Science and Technology (AJST) Science and Engineering Series, 6 (2005) 55- 66.
[11]
D. Nibou, S. Khemaissia, S. Amokrane, M. Barkat, S. Chegrouche, A. Mellah, Removal of UO22+ onto synthetic NaA zeolite, Characterization, equilibrium and kinetic studies. Chem. Eng.J, 172 (2011) 296-305.
[12]
M. Duc, Contribution à l’étude des mécanismes de sorption aux interfaces solide-liquide: Application aux cas des apatites et des oxy-hydroxydes, Thèse de Doctorat. Ecole Centrale des Arts et Manufactures, Ecole Centrale Paris, France, 2002.
[13]
M. Wei, J. L. Liao, N. Liu, D. Zhang, H. J. Kang, Y. Y. Yang, Y. Yong, J. N. Jin, Interaction between uranium and humic acid (I): Adsorption behaviors of U(VI) in soil humic acids. Nucl. Sci. Tech, 18 (2007) 287-293.
[14]
I. S. D. Yusan, S. A. Erenturk, Sorption behaviors of uranium (VI) ions on α-FeOOH. Desalination, 269 (2011) 58- 66.
[15]
H. D. Ruan, R. L. Frost, J. T. Kloprogge, L. Duong, Infrared spectroscopy of goethite dehydroxylation: III. FT-IR microscopy of in situ study of the thermal transformation of goethite to hematite, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 58 (2002) 967–981.
[16]
C. Kütahyali, M. Eral, Sorption studies of uranium and thorium on activated carbon prepared from olive stones: Kinetic and thermodynamic aspects, J. Nucl. Mater, 396 (2010) 251–256.
[17]
A. Nilchi, T. Shariati Dehaghan, S. Rasouli Garmarodi, Kinetics, isotherm and thermodynamics for uranium and thorium ions adsorption from aqueous solutions by crystalline tin oxide nanoparticles, Desalination, 321 (2013) 67-71.
[18]
P. M. Bertsch, D. B. Hunter, S. R. Sutton, S., Bajt, M. L. Rivers, In situ chemical speciation of uranium in soils and sediments by micro X-ray absorption spectroscopy, Environ. Sci. Technol, 28 (1994) 980–984.
[19]
Y. S. Ho, Review of second-order models for adsorption systems, J. Hazard. Mater, B136 (2006) 681- 689.
[20]
I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc, 40 (1918) 1361-1403.
[21]
H. M. F. Freundlich, Over the adsorption in solution, J. Phys. Chem, 57 (1906) 385-470.
[22]
C. Kütahyali, M. Eral, Selective adsorption of uranium from aqueous solutions using activated carbon prepared from charcoal by chemical activation, Sep. Purif. Technol, 40 (2004) 109-114.
[23]
X. Shuibo, Z. Chun, Z. Xinghuo, Y. Jing, Z. Xiaojian, W. Jingsong, Removal of uranium (VI) from aqueous solution by adsorption of hematite, Journal of Environmental Radioactivity, 100 (2009) 162–166.
[24]
A. Mellah, S. Chegrouche, M. Barkat, The removal of uranium (VI) from aqueous solutions onto activated carbon: Kinetic and thermodynamic investigations, Journal of Colloid and Interface Science, 296 (2006) 434–441.
[25]
M. Barkat, S. Chegrouche, A. Mellah, B. Bensmain, D. Nibou, M. Boufatit, Application of Algerian bentonite in the removal of cadmium (II) and chromium (VI) from aqueous aolutions, Journal of Surface Engineered Materials and Advanced Technology, 4 (2014) 210-226.
[26]
Y. Jung, S. Kim, S. J. Park, J. M. Kim, Preparation of functionalized nanoporous carbons for uranium loading, Colloids Surf. A: Physicochem. Eng. Aspects, 313–314 (2008) 292-295.
[27]
A. C. Q. Ladeira, C. R. Gonçalves, Influence of anionic species on uranium separation from acid mine water using strong base resins, J. Hazard. Mater, 148 (2007) 499–504.
[28]
H. Parab, Sh. Joshi, N. Shenoy, R. Verma, A. Lali, M. Sudersanan, Uranium removal from aqueous solution by coir pith: equilibrium and kinetic studies. Bioresour. Technol, 96 (2005) 1241–1248.
[29]
Sh. Xie, Ch. Zhang, X. Zhou, J. Yang, X. Zhang, J. Wang, Removal of uranium (VI) from aqueous solution by adsorption of hematite, J. Environ. Radioact, 100 (2009) 162–166.
[30]
T. Ohnuki, T. Yoshida, T. Ozaki, M. Samadfam, N. Kozai, K. Yubuta, T. Mitsugashira, T. Kasama, A. J. Francis, Interactions of uranium with bacteria and kaolinite clay, Chemical Geology, 220 (2005) 237–243.
[31]
A. Tsunashima, G. W. Brindley, M. Bastovanov, Adsorption of uranium from solution montmorillonite, compositions and properties of uranyl montmorillonites, Clays Clay Miner, 29 (1981) 10–16.
[32]
M. Konstantinou, A. Demetriou, I. Pashalidis, Adsorption of hexavalent uranium on dunite, Global NEST, J. 9 (2007)229-236.
[33]
E. R. Sylwester, E. A. Hudson, P. G. Allen, The structure of uranium (VI) sorption complexes on silica, alumina, and montmorillonite, Geochim. Cosmochim. Acta, 64 (2000) 2431-2438.
[34]
M. Sprynskyy, I. Kovalchuk, B. Buszewski, The separation of uranium ions by natural and modified diatomite from aqueous solution, J. Hazard. Mater, 181 (2010) 700-707.
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
CONTACT US
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
E-mail:
LET'S GET IN TOUCH
Name
E-mail
Subject
Message
SEND MASSAGE
Copyright © 2013-, Open Science Publishers - All Rights Reserved