Didehydro Cortistatin Inhibits HIV-1 Replicating Enzymes- An in silico Molecular Docking Studies
[1]
Thanuja Venkatesh, Department of Biotechnology, Dayananda Sagar College of Engineering, Bengaluru, India.
[2]
Tejashree Shivakumar, Department of Biotechnology, Dayananda Sagar College of Engineering, Bengaluru, India.
[3]
Soukhya C. Adishesha, Department of Biotechnology, Dayananda Sagar College of Engineering, Bengaluru, India.
[4]
Ramachandra Yarappa Lakshmikanth, Department of P. G. Studies and Research in Biotechnology and Bioinformatics, Kuvempu University, Shivamogga, India.
[5]
Kumara Hegde BA, Biology Department, Sri Dharmasthala Manjunatheswra College, Ujire, India.
[6]
Govindappa Melappa, Department of Biotechnology, Dayananda Sagar College of Engineering, Bengaluru, India.
AIDS is causing by infection of HIV, it is the deadliest and fear causing disease in the world and is rapidly expanding across the world. HIV infection leads to many complications ultimately suppress the immune system of human. There are currently many antiviral synthetic drugs are being practicing to treat or prevent HIV infection. Most of the available synthetic drugs inhibit the replication of the HIV and non-toxic. The present work, aimed to carry out an in silico molecular docking studies of didehydro cortistatin with HIV-1 proteins. Selected the 35 HIV-1 replicating enzymes and proteins for in silico molecular docking with didehydro cortistatin (dCA) to know their molecular interactions to find out as potent drug. The didehydro cortistatin have shown highest interaction with 2b4c (-170.55 kJ/mol) followed by the 1w5x (-127.28 kJ/mol), 3bvb (-127.09 kJ/mol), 1a80 (-122.64 kJ/mol), 1hmv (-116.39 kJ/mol), 1e6j (-113.38 kJ/mol), 2hmi (-108.9 kJ/mol), 1f6u (-108.77 kJ/mol), 4e7i (-106.71 kJ/mol), 3oy9 (-105.08 kJ/mol), 4e7k (-103.34 kJ/mol), 2ezo (-102.47 kJ/mol), 1hrh (-101.56 kJ/mol), 3j4f (-100.96 kJ/mol), 2m8n (-100.88 kJ/mol), 1aik (-100.64 kJ/mol). The didehydro cortistatin also showed very good docking studies with other proteins but did not cross the -100kJ/mol mark. The compound showed drug likeliness in Malsoft and admetSAR software. The didehydro cortistatin have exhibited remarkable docking profiles with all HIV-1 enzymes/ protein targets. The findings suggesting that didehydro cortistatin is a promising natural product and inexpensive HIV-1 therapy for this emerging global disease.
HIV, Replicating Proteins, Molecular Docking, Dihydro Cortistatin, Molsoft, Admetsar
[1]
Wong, J. K., Hezareh, M., Gunthard, H. F., Havlir, D. V., Ignacio, C. C., Spina, C. A., Richman, D. D: (1997) Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Sci 278: 1291–1295.
[2]
Krausslich, H. G., Ingraham, R. H., Skoog, M. T., Wimmer, E., Pallai. P. V., Carter. C. A: (1980) Activity of purified biosynthetic proteinase of human immunodeficiency virus on natural substrates and synthetic peptides. Proc Natl Acad Sci USA 86 (3): 807-811.
[3]
Kohl, N. E., Emini, E. A., Schleif, E. A., Schleif, W. A: (1988) Active human immunodeficiency virus protease is required for virus infectivity. Proc Natl Acad Sci USA 85 (13): 4686-4690.
[4]
Chiu, T. K., Davies, D. R: (2004) Structure and function of HIV-1 integrase. Cur Top Med Chem 4 (9): 965-977.
[5]
Aoki, S., Watanabe, Y., Sanagawa, M., Setiawan, A., Kotoku, N., Kobayashi, M: (2006) Cortistatins A, B, C, and D, anti-angiogenic steroidal alkaloids, from the marine sponge Corticium simplex. J Amer Chem Soc 128 (10): 3148–9.
[6]
Mousseau, G., Clementz, M. A., Bakeman, W. N., Nagarsheth, N., Cameron, M., Shi, J., Baran, P., Fromentin, R. M., Chomont, N., Valente, S. T: (2012) An analog of the natural steroidal alkaloid cortistatin a potently suppresses Tat-dependent HIV treatment. Cell Host Microbe 12 (1): 97–108.
[7]
Shi, J., Shigehisa, H., Guerrero, C. A., Shenvi, R. A., Li, C. C., Baran, P. S: (2009) Stereodivergent synthesis of 17-alpha and 17-beta-alpharyl steroids: application and biological evaluation of D-ring cortistatin analogues. Angew Chem Int Ed Engl 48: 4328–4331.
[8]
Huang, Y., Yu, J., Lanzi, A., Yao, X., Andrews, C., Tsai, L., Gajjar, M., Sun, M., Seaman, M., Padte, N., Ho, D: (2016) Engineered bispecific antibodies with exquisite HIV-1 neutralizing activity. Cell 165 (7): 1621–1631.
[9]
Gu, W. G., Zhang, X., Yuan, J. F: (2014) Anti-HIV drugs development through computational methods. AAPS J 16 (4): 674-680.
[10]
Jadaun, P., Khopkar, P., Kulkarni, S: (2016) Repurposing Phytochemicals as Anti-HIV agents. J Antivir Antiretrovir 8: 139-141.
[11]
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., Bourne, P. E: (2000) The Protein Data Bank. Nucleic Acids Res 28,235.
[12]
Seal, A., Aykkal, R., Ghosh, M: (2011) Docking study of HIV-1 reverse transcriptase with phytochemicals. Bioinformation 5 (10): 430-439.
[13]
Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., Lee, P. W., Tang, Y: (2012) admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model 52 (11): 3099-3105.
[14]
Das, S., Laskar, M. A., Sarkar, S. D., Choudhury, M. D., Choudhury, P. R., Mitra, A., Jamil, S., Lathiff, S. M. A., Abdullah, S. A., Basar, N., Nahar, L., Talukdar, A. D: (2017) Prediction of anti-Alzheimer activity of flavonoids targeting acetylcholinesterase in silico. Phytoch Anal 28: 324-331.
[15]
Freed, E. O: (1998) HIV-1 gag proteins; diverse functions in the virus life cycle. Virology 251: 1-15.
[16]
Thenin-Houssier, S., Valente, S. T: (2016) HIV-1 caspid inhibitors as antiretroviral agents. Cur HIV Res 14 (3): 270-282.
[17]
Bunluepuech, K., Sudai, T., Wattanapiromsakul, C., Tewtrakul, S: (2011) Inhibition on HIV-1 integrase activity activity and nitric oxide production of compounds from Ficus glomerata. Nat Prod Com 6 (8): 1095-1098.
[18]
Suedee, A., Tewtrakul, S., Panichayupakaranant, P: (2013) Anti-HIV integrase compound from Pometia pinnata leaves. Pharm Biol 51 (10): 1256-1261.
[19]
Suedee, A., Tewtrakul, S., Panichayupakaranant, P: (2014) Anti-HIV integrase activity of Mimusops elengi leaf extracts. J Pharm Biol 52 (1): 58-61.
[20]
Hung, T. C., Lee, W. Y., Chen, K. B., Chan, Y. C., Chen, C. Y. C: (2014) Lead screening of HIV-1 integrase inhibited by traditional Chinese medicine. Biomed Res Int 2014: 479367.
[21]
Arun, V., Ramanan, S: (2013) Docking studies of HIV-1 integrase using phytochemicals from Andrographis panniculata. Int J Sci Eng Res 4 (11): 345-348.
[22]
Park, I. W., Han, C., Song, X., Green, L. A., Wang, T., Liu, Y., Cen, C., Song, X., Yang, B., Chen, G., He, J. H: (2009) Inhibition of HIV-1 entry by extracts derived from traditional Chinese medicinal herbal plants. BMC Complem Altern Med 9: 29.
[23]
Fink, R. C., Roschek, Jr B., Albert, R. S. (2008) HIV-1 entry inhibitors with a new mode of action. Antivi Chem Chem 19: 243-255.
[24]
Zhang, H. J., Rumschlag-Booms, E., Guan, Y. F., Wang, D. Y., Liu, K. L., Li, W. F., Nguyen, V. H., Cuong, N. M., Soejarto, D. D., Fong, H. H. S., Rong, L: (2017) Potent inhibitor of drug-resistant HIV-1 strains identified from the medicinal plant Justica gendarussa. J Nat Prod 80 (6): 1798-1807.
[25]
Helfer, M., Koppensteiner, H., Schneider, M., Rebensburg, S., Forcisi, S., Muller, C., Schmitt- Kopplin, P., Schindler, M., Brack-Wener, R: (2014) The root extract of the medicinal plant Pelargonium sidoides is a potent HIV-1 attachment inhibitor. PLOS One 9 (1): e87487.
[26]
Kanyara, J. N., Njagi, E. N: (2005) Anti-HIV activities in extracts from some medicinal plants as assessed in an in vitro biochemical HIV-1 reverse transcriptase assay. Phyto Res 19 (4): 287-290.
[27]
Klos, M., van de Venter, M., Milne, P. J., Traore, H. N., Meyer, D., Oosthuizen, V: (2009) In vitro anti-HIV activity of five selected south African plant extract. J Ethnopharm 124 (2): 182-188.
[28]
Rao, G. S., Bhatnagar, S: (2003) In silico structure based design of a potent, mutation resilient, small peptide inhibitor of HIV-1 reverse transcriptase. J Biomol Structu Dyna 21 (2): 171-178.
[29]
Kumari, G., Singh, R. K: (2015) Molecular modelling, synthesis, and anti-HIV activity of novel isoindolinedione analogues as potent non-nucleoside reverse transcriptase inhibitors. Chem Biol Drug Des 87: 200-212.
[30]
Van de Waterbeemd, H., Camenisch, G., Folkers, G., Chretien, J. R., Raeysky, Q. A: (1998) Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors. J Drug Target 6 (2): 151-165.
[31]
Raies, A. B., Bajic, V. B: (2016) In silico toxicology: computational methods for the prediction of chemical toxicology. Comp Mol Sci 6 (2): 147-172.