Linear Modulation Scheme in Multilevel Inverter
Pulse width modulation (PWM) strategies used in a conventional inverter can be modified to use in multilevel converters. The advent of the multilevel converter PWM modulation methodologies can be classified according to switching frequency as been illustrated. The three multilevel PWM methods most discussed in the literature have been multilevel carrier-based PWM, selective harmonic elimination, and multilevel space vector PWM; all are extensions of traditional two-level PWM strategies to several levels. Other multilevel PWM methods have been used to a much lesser extent by researchers; therefore, only the three major techniques will be discussed in this chapter.
[1]
M. Amin and B. F. Wollenberg, “Toward a smart grid: Power delivery for the 21st century,” IEEE Power Energy Mag., vol. 3, no. 5, pp. 34–41, 2005.
[2]
N. Hatziargyriou, H. Asano, R. Iravani, and C. Marnay, “Microgrids,” IEEE Power Energy Mag., vol. 5, no. 4, Jul./Aug. 2007.
[3]
H. You, V. Vittal, and Z. Yang, “Self-healing in power systems: An approach using islanding and rate of frequency decline-based load shedding,” IEEE Trans. Power Syst., vol. 18, no. 1, 2003.
[4]
P. Mittra and G. K. Venayagamoorthy, “Implementation of an intelligent reconfiguration algorithm for an electric ship power system,” IEEE Trans. Ind. Applicat., vol. 47, no. 5, pp. 2292–2300, 2011.
[5]
A. L. Dimeas and N. D. Hatziargyriou, “Operation of a multiagent system for microgrid control,” IEEE Trans. Power Syst., vol. 20, no. 3, pp. 1447–1455, Aug. 2005.
[6]
M. Pipattanasomporn, H. Feroze, and S. Rahman, “Multi-agent systems in a distributed smart grid: Design and implementation,” in Proc. IEEE Power Systems Conf. Exposition, 2009, pp. 1–8.
[7]
K. L. Butler-Purry and N. D. R. Sarma, “Self-healing reconfiguration for restoration of naval shipboard power systems,” IEEE Trans. Power Syst., vol. 19, no. 2, pp. 754–762, 2004.
[8]
Z. Jun, L. Junfeng,W. Jie, and H.W. Ngan, “A multi-agent solution to energy management in hybrid renewable energy generation system,” Renewable Energy, vol. 36, pp. 1352–1363, 2011.
[9]
B. Ramachandran, S. K. Srivastava, C. S. Edrington, and D. A. Cartes, “An intelligent auction scheme for smart grid market using a hybrid immune algorithm,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4603–4612, Oct. 2011.
[10]
G.Weiss,Multiagent Systems. Cambridge,MA: MIT Press, 1999, ch. 1–5, 11–13.
[11]
C. Colson and M. H. Nehrir, “Algorithms for distributed decisionmaking for multi-agent microgrid power management,” in Proc. IEEE Power and Energy Society General Meeting, 2011.
[12]
P. Kundur, N. Balu, and M. Lauby, Power System Stability and Control. New York: McGraw-Hill, 1994, p. 209. D. C. Ludois and G. Venkataramanan, “A critical examination of DC power transmission approaches for interconnecting bulk wind generation with the electric grid,” MDPI Energies, vol. 6, no. 3, pp. 1263–1289, 2010.
[13]
S. S. Gjerde and T. M. Undeland, “The best suitable multilevel converters for offshore wind power generators without transformers,” in Proc. Int. Power Electron. Conf., 2010, pp. 2398–2404.
[14]
S. Allebrod, R. Hamerski, and R. Marquardt, “New transformerless, scalable modular multilevel converters for HVDC-transmission,” in Proc. IEEE Power Electron. Spec. Conf., 2008, pp. 174–179.
[15]
J. K. Reed and G. Venkataramanan, “Fault tolerant MVDC-HVAC power converter for wind farm applications,” presented at the CIGRE HVDC Colloq., San Francisco, CA, USA, 2012.
[16]
A. L. P. de Oliveira, C. E. Tiburcio, M. N. Lemes, and D. Retzmann, “Prospects of voltage-sourced converters (VSC) applications in DC transmission systems,” in Proc. Transmiss. Distrib. Conf. Expo.: Latin Am., 2010, pp. 491–495.
[17]
U. N. Gnanarathna, S. K. Chaudhary, A. M. Gole, and R. Teodorescu, “Modular multi-level converter based HVDC system for grid connection of offshore wind power plant,” in Proc. IET Int. Conf. AC DC Power Transmiss., 2010, pp. 1–5.
[18]
G. P. Adam, O. Anaya-Lara, and G. Burt, “Multi-terminal DC transmission system based on modular multilevel converter,” in Proc. 44th Int. Universities Power Eng. Conf., 2009, pp. 1–5.
[19]
D. Soto-Sanchez and T. C. Green, “Control of a modular multilevel converter-based HVDC transmission system,” in Proc. 14th Eur. Conf. Power Electron. Appl., 2011, pp. 1–10.
[20]
D. C. Ludois, J. K. Reed, and G.Venkataramanan, “Hierarchical control of bridge-of-bridge multilevel power converters,” IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2679–2690, Aug. 2010.
[21]
J. Reed, G. Venkataramanan, and F. Martinez, “Complex phasor modelling and control of modular multilevel inverters,” in Proc. IEEE Energy Convers. Congr. Expo, 2011, pp. 4013–4020.
[22]
S. Rohner, J. Weber, and S. Bernet, “Continuous model of modular multilevel converter with experimental verification,” in Proc. IEEE Energy Convers. Congr. Expo., 2011, pp. 4021–4028.
[23]
K. Ilves, A. Antonopoulos, S. Norrga, and H.-P. Nee, “Steady-state analysis of interaction between harmonic components of arm and line quantities of modular multilevel converters,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 57–68, Jan. 2012.
[24]
U. N. Gnanarathna, A. M. Gole, and R. P. Jayasinghe, “Efficient modelling of modular multilevel HVDC converters (MMC) on electromagnetic transient simulation programs,” IEEE Trans. Power Del., vol. 26, no. 1, pp. 316–324, Jan. 2011.
[25]
G. W. Wester and R. D. Middlebrook, “Low-frequency characterization of switched dc-dc converters,” IEEE Trans. Aerospace Electron. Syst., vol. AES-9, no. 3, pp. 376–385, May 1973.
[26]
D. C. Ludois, “Wind farms with DC collection networks using bridge of bridge multilevel converters,” Ph.D. dissertation, Univ. Wisconsin- Madison, Madison, WI, USA, 2012.
[27]
L. Maharjan, T. Yoshii, S. Inoue, and H. Akagi, “A transformerless energy storage system based on a cascade PWM converter with starconfiguration,” in Proc. Power Convers. Conf. -Nagoya, 2007, pp. 751– 757.
[28]
L. Maharjan, S. Inoue, and H. Akagi, “A transformerless energy storage system based on a cascade multilevel PWM converter with star configuration,” IEEE Trans. Ind. Appl., vol. 44, no. 5, pp. 1621–1630, Sep./Oct. 2008.
[29]
M. Hagiwara and H. Akagi, “Control and experiment of pulse width modulated modular multilevel converters,” IEEE Trans. Power Electron., vol. 24, no. 7, pp. 1737–1746, Jul. 2009.
[30]
J. Sun, “Impedance-based stability criterion for grid-connected inverters,” IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3075–3078, Nov. 2011.
[31]
P. Munch, D. Gorges, M. Izak, and S. Liu, “Integrated current control, energy control and energy balancing of Modular Multilevel Converters,” in Proc. 36th Annu. Conf. IEEE Ind. Electron. Soc., 2010, pp. 150–155.
[32]
E. Solas, G. Abad, J. A. Barrena, A. C´arcar, and S. Aurtenetxea, “Modulation of modular multilevel converter for HVDC application,” in Proc. 14th Int. Power Electron. Motion Control Conf., 2010, pp. T2-84–T2-89.
[33]
P. Munch, S. Liu, and G. Ebner, “Multivariable current control of modular multilevel converters with disturbance rejection and harmonics compensation,” in Proc. IEEE Int. Conf. Control Appl., 2010, pp. 196–201.
[34]
M. A. Perez, J. Rodriguez, E. J. Fuentes, and F. Kammerer, “Predictive control of AC-AC modular multilevel converters,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2832–2839, Jul. 2012.
[35]
A. Haider, N. Ahmed, L. Angquist, and H.-P. Nee, “Open-loop approach for control of multi-terminal DC systems based on modular multilevel converters,” in Proc. 14th Eur. Conf. Power Electron. Appl., 2011, pp. 1–9.
[36]
L. Angquist, A. Antonopoulos, D. Siemaszko, K. Ilves, M. Vasiladiotis, and H.-P. Nee, “Open-loop control of modular multilevel converters using estimation of stored energy,” IEEE Trans. Ind. Appl., vol. 47, no. 6, pp. 2516–2524, Nov./Dec. 2011.
[37]
K. Ilves, A. Antonopoulos, S. Norrga, and H.-P. Nee, “A new modulation method for the modular multilevel converter allowing fundamental switching frequency,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3482–3494, Aug. 2012.
[38]
D. Ionel, “Personal correspondence on the topic medium voltage electric machines,” Jun. 2011.