Green Synthesis, a Pathway to Nanotechnology Sustainability: An Overview
One of the bedrock of nanotechnology is the production of nanoparticles and their self-assembly. The production methods, which are not cost effective, involve the use of hazardous chemical reagent and this unnatural character of nanoparticles makes them potentially dangerous to human life. Therefore, alternative nanoparticles production processes that is easily scalable, affordable, renewable and environmentally friendly is highly sought for, hence this work reviews the application of green synthesis for the production of nanoparticles. Green synthesis, otherwise referred to as "Particle farming", involves the use of biological materials -living plants or their extracts- for production of nanoparticles (known as bio-nanoparticles). It is a potential solution to the problems of cost intensity and hazardous process of production of nanoparticle. This method ensures the sustainability of nanoparticles and nanotechnology because of its renewable source. The work further reviews applications of this technology to healthcare, environment, agriculture and in other areas. This is an evolving technology that requires more research to ensure that the level of safety that can be enjoyed from “particle farming” is measurable.
Green Synthesis, Particle Farming, Nanotechnology, Nanoparticles, Bio-Nanoparticles
[1]
P. Christopher, D. Hélène, M. Claire, Nanotechnology: an overview based on indicators and statistics, DSTI: STI working paper, 7 (2009).
[2]
F. Devon, D. Salil, K. Christopher, History of nanotechnology, OpenStax-CNX module: m1450, 1 (2007) retrieved from http://creativecommons.org/licenses/by/2.0/1http://frazer.rice.edu/nanotech
[3]
M. Pal, Nanotechnology: A New Approach in Food Packaging. J Food Microbiol Saf Hyg 2 (2017) 121, doi: 10.4172/2476-2059.1000121.
[4]
J. F. Sargent, The National Nanotechnology Initiative: Overview, Reauthorization, and Appropriations Issues. Congressional Research Service 7-5700 (2014), www. crs. gov.
[5]
P. Ghosh, Introduction to nanomaterials and nanotechnology. NPTEL (module 9: lecture 1) (2015) retrieved from http://nptel.ac.in/courses/103103033/module9/lecture1. pdf on October 16 2017.
[6]
S. A. Mayyadah, Nanotechnology. Nanotechnology (Lec. 1+2) (2015).
[7]
M. E. Anu, M. P. Saravanakumar, A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conference Series: Materials Science and Engineering, 263 (2017), doi: 10. 1088/1757-899X/263/3/032019.
[8]
S. Manjo, S. Manikandan, A. K. Kumaraguru, Nanoparticles: A new technology with wide applications, Research journal of nanoscience and nanotechnology, (2010), /Dio: 3923/rjnn. 2010.
[9]
C. J. Murphy, Materials science: nanocubes and nanoboxes, Science, 298 (5601) (2002) 2139–2141.
[10]
Y. Krishan, Synthesis of nanomaterials. (2017) Retrieved from https://slideshare.net/krishanyadav28/synthesis of nanomaterial.
[11]
European Commission, Nanotechnologies — Principles, Applications, Implications and Hands-on Activities — A compendium for educators, Luxembourg, 2013, doi: 10. 2777/76945.
[12]
R. Kumar, S. K. Shukla, A. Pandey, A. Qidwai, A. Dikshit, A Synoptic Review on Gold Nanoparticles: Green Synthesis and Antibacterial Application. International Journal of Theoretical & Applied Sciences, 9 (2) (2017) 119-124.
[13]
A. A. Mitiku, B. Yilmaz, Int. J. Pharm. Sci. Rev. Res., 46 (1) (2017) 52-57.
[14]
S. M. Lindsay, Introduction to nanoscience. Published by Oxford University Press Inc., NewYork United States, 2010.
[15]
S. P. Gavarkar, S. R. Adnaik, K. S. Mohite, S. C. Magdum, Green synthesis and antimicrobial activity of silver nanoparticles of Cucumismelo extract, Int. J. Univers. Pharm. Biosci., 3 (4) (2015) 392-396.
[16]
B. R. Hedaginal, T. C. Taranath, Phytosynthesis of silver nanoparticles by ThunbergiafragransRoxb. and their characterization, Int. J. Pharm. Sci. Rev. Res., 39 (1) (2016) 54-58.
[17]
A. Rais, M. Anam, Green Synthesis (Using Plant Extracts) of Ag and Au Nanoparticles. Glob J Nano 2 (3) (2017) 555-589.
[18]
R. B. Eranga, D. J. Chanika, A. J. Uthpala, W. D. R. Ranasinghe, M. S. Rohini, V. U. Preethi, Honey Mediated Green Synthesis of Nanoparticles: New Era of Safe Nanotechnology. Journal of Nanomaterials (2017) 919836, https://doi.org/10. 1155/2017/5919836
[19]
G. Geoprincy, B. N. VidhyaSrr, U. Poonguzhali, N. Nagendra Gandhi, S. Renganathan, A review on green synthesis of silver nanoparticles. Asian Journal of Pharmaceutical and Clinical Research, 6 (1) (2013) 8-12.
[20]
I. Hussain, N. B. Singh, A. Singh, Green synthesis of nanoparticles and its potential application. BiotechnolLett 38 (2016) 545, https://doi.org/10. 1007/s10529-015-2026-7
[21]
K. N. Thakkar, S. S. Mhatre, R. Y. Parikh, Biological synthesis of metallic nanoparticles, Nanomedicine, 6 (2010) 257–262.
[22]
N. Krumov, I. P. Nochta, S. V. Oder, A. Gotcheva, C. AngelovPosten, Production of Inorganic Nanoparticles by Microorganisms, Chem. Eng. Technol., 32 (7) (2009) 1026–1035.
[23]
R. S. Marcia, F. LuizLepre, A. Roˆmulo, A. Cla´udio, O. Nascimento, Biosynthesis and Uptake of Copper Nanoparticles by Dead Biomass of Hypocrealixii isolated from the Metal Mine in the Brazilian Amazon Region, Plos One, 8 (11) (2013) 1-8.
[24]
M. A. Hameed, Al-Samarrai, Nanoparticles as Alternative to Pesticides in Management Plant Diseases-A Review, International Journal of Scientific and Research Publications, 2 (4) (2012) 1-4.
[25]
S. K. Srikar, D. D. Giri, D. B. Pal, P. K. Mishra, S. N. Upadhyay, Green Synthesis of Silver Nanoparticles: A Review. Green and Sustainable Chemistry, 6 (2016) 34-56, http://dx.doi.org/10.4236/gsc.2016.61004.
[26]
M. Batoool, B. Masood, Green Synthesis of Copper Nanoparticles Using SolanumLycopersicum (Tomato Aqueous Extract) and Study Characterization, J NanosciNanotechnol Res., 1 (2017) 1: 5.
[27]
N. C. Sharma, S. V. Sahi, S. Nath, J. G. Parsons, J. L. Gardea-Torresdey, T. Pal, Synthesis of plantmediated gold nanoparticles andcatalytic role of biomatrix embedded nanomaterials, Environ Sci Technol., 41 (2007) 5137– 5142.
[28]
A. Rónavári, D. Kovács, N. Igaz, C. Vágvölgyi, I. M. Boros, Z. Kónya, I. Pfeiffer, M. Kiricsi, Biological activity of green-synthesized silver nanoparticles depends on the applied natural extracts: a comprehensive study, International Journal of Nanomedicine, 12 (2017) 871–88.
[29]
M. Mahdavi, F. Namvar, M. B. Ahmad, R. Mohamad, Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassummuticum) aqueous extract, Molecules 18 (5) (2013) 5954–5964.
[30]
P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S. R. Sainkar, M. I. Khan, P. Renu, P. V. Ajaykumar,; M. Alam, R. Kumar, M. Sastry, Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Letters 1 (10) (2001) 515–519.
[31]
M. Gericke, A. Pinches, Microbial production of gold nanoparticles, Gold Bull., 83 (2006) 132–140.
[32]
S. Gurunathan, K. Kalishwaralal, R. Vaidyanathan, D. Venkataraman, S. R. Pandian, J. Muniyandi, N. Hariharan, S. H. Eom, Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli, Colloids Surf. B Biointerfaces, 74 (2009) 328–335.
[33]
S. U. Ganaie, T. Abbasi, S. A. Abbasi, Green synthesis of silver nanoparticles using an otherwise worthless weed mimosa (Mimosa pudica): Feasibility and process development toward shape/size control, Part. Sci. Technol, 33 (2015) 638–644.
[34]
A. Nanda, M. Saravanan, Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE, Nanomedicine, 5 (2009) 452–456.
[35]
M. Gajbhiye, J. Kesharwani, A. Ingle, A. Gade, M. Rai, Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine, 5 (2009) 382–386.
[36]
H. A. Salam, R. Sivaraj, R. Venckatesh, Green synthesis and characterization of zinc oxide nanoparticles from Ocimumbasilicum L. var. purpurascensBenth. - Lamiaceae leaf extract. Mater. Lett. 131 (2014) 16-18.
[37]
N. A. Samat, R. M. Nor, Sol-gel synthesis of zinc oxide nanoparticles using Citrus aurantifolia extracts. Ceram. Int. 39 (2013) 545-S548.
[38]
G. Sangeetha, S. Rajeshwari, R. Venckatesh, Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: Structure and optical properties, Mater. Res. Bull., 46 (2011) 2560-2566.
[39]
M. S. Shekhawat, C. P. Ravindran, M. Manokari, Biosynthesis of zinc oxide nanoparticles from Passiflorafoetida L. extracts and their characterization, Int. J. Green Herb. Chem. 3 (2014) 518-523.
[40]
S. Vijayakumar, G. Vinoj, B. Malaikozhundan, S. Shanthi, B. Vaseeharan, Plectranthusamboinicus leaf extract mediated synthesis of zinc oxide nanoparticles and its control of methicillin resistant Staphylococcus aureus biofilm and blood sucking mosquito larvae. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 137 (2013) 886-891.
[41]
R. Yuvakkumar, J. Suresh, A. J. Nathanael, M. Sundrarajan, S. I. Hong, Novel green synthetic strategy to prepare ZnOnanocrystals using rambutan (Nepheliumlappaceum L.) peel extract and its antibacterial applications, Mater. Sci. Engineer. C, 41 (2014) 17-27.
[42]
M. Kowshik, Deshmukh, W. Vogel, J. Urban, S. K. Kulkarni, K. M. Paknikar, Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode, Biotechnol. Bioeng., 78 (2002) 583–588.
[43]
M. Kowshik, W. Vogel, J. Urban, S. K. Kulkarni, K. M. Paknikar, Microbial synthesis of semiconductor PbSnanocrystallites, Adv. Mater., 14 (2002) 815–818.
[44]
A. K. Jha, K. Prasad, A. R. Kulkarni, Plantsystem: Nature’s nanofactory. ColloidsSurf. B, 73 (2009) 219–223.
[45]
F. Wang, B. Cao, C. Mao, Bacteriophage bundles with prealigned Ca2 initiate the oriented nucleation and growth of hydroxylapatite, Chem. Mater., 22 (2010) 3630–3636.
[46]
H. Xu, B. Cao, A. George, C. Mao, Self-assembly and mineralization of genetically modifiable biological nanofibers driven by β- structure formation. Biomacromolecules, 12 (2011) 2193–2199.
[47]
F. M. Fernandes, T. Coradin, C. Aime, Self-Assembly in biosilicification and biotemplated silica materials. Nanomaterials, 4 (2014) 792–812.
[48]
E. S. Royston, A. D. Brown, M. T. Harris, J. N. Culver, Preparation of silica stabilized tobacco mosaic virus templates for the production of metal and layered nanoparticles, J. Colloid Interface Sci., 332 (2009) 402–407.
[49]
N. Vigneshwaran, N. M. Ashtaputre, P. V. Varadarajan, R. P. Nachane, K. M. Paralikar, R. H. Balasubramanya, Biological synthesis of silver nanoparticles using the fungus Aspergillusflavus, Mater. Lett. 61 (2007) 1413–1418.
[50]
C. Mao, C. E. Flynn, A. Hayhurst, R. Sweeney, J. Qi, G. Georgiou, B. Iverson, A. M. V. Belcher, iral assembly of oriented quantum dot nanowires, Proc. Natl. Acad. Sci. USA, 100 (2003) 6946–6951.
[51]
B. Ankamwar, Biosynthesis of gold nanoparticles (green-gold) using leaf extract of Terminaliacatappa, E J. Chem., 7 (2010) 1334–1339.
[52]
S. Maensiri, P. Laokul, J.; Klinkaewnarong, S. Phokha, V. Promarak, S. Seraphin, Indium oxide (In2O3) nanoparticles using Aloe vera plant extract: Synthesis and optical properties, J. Optoelectron. Adv. Mater., 10 (2008) 161–165.
[53]
G. Ghodake, N. Deshpande, Y. Lee, E. Jin, Pear fruit extract-assisted room-temperature biosynthesis of gold nanoplates. Colloids Surf. B Biointerfaces, 75 (2010) 584–589.
[54]
D. Raghunandan, S. Basavaraja, B. Mahesh, S. Balaji, S. Y. Manjunath, A. Venkataraman, Biosynthesis of stable polyshaped gold nanoparticles from microwave-exposed aqueous extracellular anti-amlignant Guava (Psidiumguajava) leaf extract, Nanobiotechnology, 5 (2009) 34–41.
[55]
M. Sathishkumar, K. Sneha, Y. S. Yun, Palladium nanocrystals synthesis using Curcumalonga tuber extract, Int. J. Mater. Sci., 4 (2009). 11–17.
[56]
J. Y. Song, E. Y. Kwon, B. S. Kim, Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract, Bioprocess. Biosyst. Eng., 33 (2010) 159–164.
[57]
N. P. S. Acharyulu, R. S. Dubey, V. Swaminadham, R. L. Kalyani, P. Kollu, S. V. N. Pammi, Green synthesis of CuO nanoparticles using Phyllanthusamarus leaf extract and their antibacterial activity against multidrug resistance bacteria, Int. J. Eng. Res. Technol. 3 (2014) 639–641.
[58]
T. Wang, J. Lin, Z. Chen, M. Megharaj, R. Naidu, Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution, J. Clean Prod., 83 (2014) 413–419.
[59]
R. Protima, K. Siim, F. Stanislav, R. Erwan, A Review on the Green Synthesis of Silver Nanoparticles and Their Morphologies Studied via TEM, Advances in Materials Science and Engineering (2015) 682749, http://dx.doi.org/10.1155/2015/682749.
[60]
P. Phanjom, G. Ahmed, Biosynthesis of silver nanoparticles by Aspergillusoryzae (MTCC No. 1846) and its characterizations. Nanoscience and Nanotechnology, 5 (1) (2015) 14-21.
[61]
V. T. P. Vinod, P. Saravanan, B. Sreedhar, D. K. Devi, R. B. Sashidhar, A facile synthesis and characterization of Ag, Au and Pt nanoparticles using a natural hydrocolloid gum kondagogu (Cochlospermumgossypium), Colloids and Surfaces B: Biointerfaces, 83 (2) (2011) 291-298.
[62]
M. Z. H. Khan, F. K. Tareq, M. A. Hossen, M. N. A. M. Roki, Green synthesis and characterization of silver nanoparticles using coriandrumsativum leaf extract. Journal of Engineering Science and Technology, 13 (1) (2018) 158 – 166.
[63]
S. Atalay, G. Ersöz, Novel Catalysts in Advanced Oxidation of Organic Pollutants, Springer Briefs in Green Chemistry for Sustainability, (2016), DOI 10.1007/978-3-319-28950-2_2.
[64]
R. A. Sheldon, I. Arends, U. Hanefeld, Green chemistry and catalysis, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007.
[65]
Y. Abboud, T. Saffaj, A. Chagraoui, E. Bouari, K. Brouzi, Tanane, O. Ihssane, Biosynthesis, characterization and antimicrobial activity of copperoxide nanoparticles (CONPs) produced using brown alga extract (Bifurcariabifurcata), ApplNanosci, 1 (1) (2013).
[66]
A. I. Rahman, D. Jumbianti, S. Magdalena, H. Sudrajat, Synthesis of copper oxide nanoparticles by using Phormidiumcyanobacterium, Indo J Chem, 9 (2009) 355–360.
[67]
S. Gunalan, R. Sivaraj, R. Venckatesh, Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: optical properties. SpectrochimActa A, 97 (2012) 1140–1144.
[68]
S. Honary, H. Barabadi, E. G. Fathabad, F. Naghibi, Green synthesis of copper oxide nanoparticles using penicilliumaurantiogriseum, penicilliumcitrinum and penicilliumwakasmanii, Digest J NanomaterBiostruct, 7 (2012) 999–1005.
[69]
H. J. Lee, G. Lee, N. R. Jang, J. M. Yun, J. Y. Song, B. S. Kim, Biological synthesis of copper nanoparticles using plant extract, Nanotech, 1 (2011) 371-374.
[70]
I. Subhankari, P. L. Nayak, Synthesis of Copper Nanoparticles Using Syzygiumaromaticum (Cloves) Aqueous Extract by Using Green Chemistry, World Journal of Nano Science & Technology, 2 (1) (2013) 14-17.
[71]
J. Peternelaa, M. F. Silvaa, M. F. Vieiraa, R. Bergamascoa, A. M. S. Vieirab, Synthesis and Impregnation of Copper Oxide Nanoparticles on Activated Carbon through Green Synthesis for Water Pollutant Removal, Materials Research, 21 (1) (2018) e20160460. DOI: http://dx.doi.org/10.1590/1980-5373-MR-2016-0460.
[72]
J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang,, W. Shao,, N. He, J. Hong, C. Chen, Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomumcamphora leaf, Nanotechnology, 18 (2007) 105104-105114.
[73]
K. Kalishwaralal, V. Deepak, S. Ramkumarpandian, H. Nellaiah, G. Sangiliyandi, Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis, Mater. Lett. 62 (2008) 4411–4413.
[74]
V. K. Sharma, R. A. Yagard, Y. Lin, Silver nanoparticles: Green synthesis and their antimicrobial activities. Colloid and Interface Science, 145 (2009) 83-96.
[75]
Z. A. Ali, R. Yahya, S. D. Sekaran, R. Puteh, Green Synthesis of Silver Nanoparticles Using Apple Extract and Its Antibacterial Properties. Advances in Materials Science and Engineering (2016) 4102196, http://dx.doi.org/10.1155/2016/4102196
[76]
R. R. Bhosale, A. S. kulkarni, S. S. Gilda, N. H. Aloorkar, R. A. Osmani, B. R. Harkare, Innovative eco-friendly approach for green synthesis of silver nanoparticles. International journal of pharceutical science and nanotechnology, 7 (1) (2014) 2328-2337.
[77]
N. M. Josephine, B. Radhika, T. Ganesan, Synthesis of silver nanoparticle using fresh tomato pomace extract, Int. J. Nanomat. Biostruc. 4 (1) (2014) 12-17.
[78]
A. Eman, Eco-friendly production of silver nanoparticles from peel of Tangerine for degradation of dye, World J. Nano Sci. Eng. 5 (1) (2015) 10-16.
[79]
J. Devendra, K. D. Hemant, K. Sumitha, S. L. Kothari, Synthesis of Plant-Mediated Silver nanoparticles using Papaya Fruit Extract and Evaluation of their Anti-Microbial Activities. Dig. J. Nanomat. Bios., 4 (4) (2009) 723-727.
[80]
K. Murugan, B. Senthilkumar, D. Senbagam, S. AlSohaibani, Biosynthesis of silver nanoparticles using Acacia leucophloea extract and their antibacterial activity, International Journal of Nanomedicine, 9 (1) (2014) 2431–2438.
[81]
Song, J. Y.; and Kim, B. S. (2009). Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess and Biosystems Engineering, 32 (1), 79-84.
[82]
G. Singhal, R. Bhavesh, K. Kasariya, A. R. Sharma, R. P. Singh, Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity, Journal of Nanoparticle Research, 13 (7) (2011) 2981-2988.
[83]
Y. Li, T. Wu, S. Chen, M. Ajmal Ali, Fahad M. A. AlHemaid, Green synthesis and Electrochemical Characterizations of Gold Nanoparticles Using Leaf Extract of Magnolia kobus, Int. J. Electrochem. Sci., 7 (2012) 12742 – 12751.
[84]
K. Ghule, A. V. Ghule, J. Y. Liu, Y. C. Ling, Microscale size triangular gold prisms synthesized using Bengal gram beans (Cicerarietinum L.) extract and HAuCl4 × 3H2O: a green biogenic approach, J. Nanosci. Nanotechnol., 6 (2006) 3746–3751.
[85]
S. S. Shankar, A. Rai, A. Ahmad, M. Sastry, Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings, Chem Mater., 17 (2005) 566–572.
[86]
S. S. Shankar, A. Ahmad, R. Pasricha, M. Sastry, Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes, Journal of Materials Chemistry, 13 (7) (2003) 1822–1826.
[87]
M. Jayandran, M. MuhamedHaneefa, V. Balasubramanian, Green synthesis and characterization of Manganese nanoparticles using natural plant extracts and its evaluation of antimicrobial activity, Journal of Applied Pharmaceutical Science, 5 (12) (2015) 105-110.
[88]
M. N. Nadagouda, R. S. Varma, Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract, Green Chemistry, 10 (8) (2008) 859–862.
[89]
S. M. Reddy, K. K. R. Datta, C. Sreelakshmi, M. Eswaramoorthy, B. V. S. Reddy, Honey mediated green synthesis of Pd nanoparticles for suzuki coupling and hydrogenation of conjugated olefins, Nanoscience and Nanotechnology Letters, 4 (4) (2012) 420–425.
[90]
Y. P. Yew, K. Shameli, M. Miyake, N. Kuwano, N. B. Khairudin, S. E. Mohamad, K. X. Lee, Green Synthesis of Magnetite (Fe3O4) Nanoparticles Using Seaweed (Kappaphycusalvarezii) Extract, Nanoscale Research Letters, 11 (2016) 276, DOI 10.1186/s11671-016-1498-2.
[91]
R. Yuvakkumar, S. I. Hong, Green synthesis of spinel magnetite iron oxide nanoparticles, Adv Mater Res 1051 (2014) 39–42.
[92]
A. M. Awwad, N. M. Salem, A green and facile approach for synthesis of magnetite nanoparticles, J. Nanosci. Nanotechnol. 2 (6) (2012) 208–213.
[93]
N. Basavegowda, K. B. S. Magar, K. Mishra, Y. R. Lee, Green fabrication of ferromagnetic Fe3O4 nanoparticles and their novel catalytic applications for the synthesis of biologically interesting benzoxazinone and benzthioxazinonederivatives, New J Chem 38 (11) (2014) 5415–5420.
[94]
A. Demir, R. Topkaya, A. Baykal, Green synthesis of superparamagnetic Fe3O4 nanoparticles with maltose: its magnetic investigation. Polyhedron 65 (2013) 282–287.
[95]
N. P. Bheemangouda, C. T. Tarikere, L. A. Limonia, Leaf mediated synthesis of zinc oxide nanoparticles: A potent tool against Mycobacterium tuberculosis, International Journal of microbiology, 5 (2016) 197-204.
[96]
N. Saifuddin, C. W. Wong, A. A. N. Yasumira, Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation, E-Journal of Chemistry, 6 (1) (2009) 61–70.
[97]
N. Rajalakshmi, N. Lakshmi, K. S. Dhathathreyan, Nano titanium oxide catalyst support for proton exchange membrane fuel cells, Int J Hydrogen Energy, 33 (2008) 7521–6.
[98]
M. Sastry, A. Ahmad, N. I. Islam, R. Kumar, Biosynthesis of metal nanoparticles using fungi and actinomycetes, Current Sc., 85 (2) (2003) 162-170.
[99]
M. Sastry, A. Ahmad, M. I. Khan, R. Kumar, Microbial nanoparticle production, Nanobiotechnology, 85 (2) (2003) 163-169.
[100]
M. Shah, D. Fawcett, S. Sharma, S. K. Tripathy, G. E. Jai Poinern, Green Synthesis of Metallic Nanoparticles via Biological Entities, Materials 8 (2015) 7278–7308, doi: 10. 3390/ma8115377.
[101]
S. Victor, R. V. Alfredo, Green Synthesis of Noble Metal (Au, Ag, Pt) Nanoparticles, Assisted by Plant-Extracts, Noble Metals, Dr. Yen-Hsun Su (Ed) InTech, 2012, Available from: http://www.intechopen.com/books/noble-metals/green-synthesis-of-noble-metal-au-agpt-nanoparticles-assisted-by-plant-extracts.
[102]
K. Gitanjali, V. Aruna, A Review on Synthesis of ZnO nanoparticles using plant extract. International journal for innovative research in multidisciplinary field, 3 (12) (2017) 49-51.
[103]
Z. Kamila, Methods of ZnO nanoparticles synthesis. Journal of Biotechnology, Computational Biology and Bionanotechnology 95 (2) (2014) 150-159.
[104]
M. Mohammadlou, H. Maghsoudi, H. Jafarizadeh-Malmiri, A review on green silver nanoparticles based on plants: Synthesis, potential applications and eco-friendly approach. International Food Research Journal 23 (2) (2016) 446-463.
[105]
X. Zhang, Z. Liu, W. Shen, S. Gurunathan, Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int. J. Mol. Sci., 17 (2016) 1534; doi: 10. 3390/ijms17091534.
[106]
S. Mukherjee, B. Vinothkumar, S. Prashanthi, R. B. Prakriti, B. Sreedharb, C. R. Patra, Potential therapeutic and diagnostic applications of one-step in situ biosynthesized gold nanoconjugates (2-in-1 system) in cancer treatment 3, RSC Advances. 3 (2013) 2318–2329.
[107]
R. Kumar, S. K. Shukla, M. Pandey, A. Pandey, A. Pathak, and A. Dikshit, Synthesis and antimicrobial effects of colloidal gold nanoparticles against prevalent waterborne bacterial pathogens, Cogent Chemistry, 2 (2016) 1192522. http://dx.doi.org/10.1080/23312009.2016.1192522.
[108]
S. Gurunathan, J. Raman, S. N. AbdMalek, P. A. John, S. Vikineswary, Green synthesis of silver nanoparticles using Ganoderma neo-japonicumImazeki: a potential cytotoxic agent against breast cancer cells. International Journal of Nanomedicine, 8 (2013) 4399–4413.
[109]
S. Gurunathan, J. W. Han, A. A. Dayem, V. Eppakayala, J. H. Park, S. G. Cho, K. J. Lee, J. H. Kim, Green synthesis of anisotropic silver nanoparticles and its potential cytotoxicity in human breast cancer cells (MCF-7), J. Ind. Eng. Chem., 19 (2013) 1600–1605.
[110]
S. Gurunathan, J. H. Park, J. W. Han, J. H. Kim, Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybeindica in MDA-MB-231 human breast cancer cells: Targeting p53 for anticancer therapy, Int. J. Nanomed. 10 (2015) 4203–4222.
[111]
S. Gurunathan, J. W. Han, E. S. Kim, J. H. Park, J. H. Kim, Reduction of graphene oxide by resveratrol: A novel and simple biological method for the synthesis of an effective anticancer nanotherapeutic molecule, Int. J. Nanomed., 10, (2015) 2951–2969.
[112]
D. H. Jo, J. H. Kim, T. G. Lee, J. H. Kim, Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine, 11 (2015) 1603–1611.
[113]
M. W. Tan, Z. Ye, J. Yuan, Synthesis and characterization of titania-based monodisperse fluorescent europium nanoparticles for biolabeling, Journal of Luminescence, 117 (2006) 20-28.
[114]
H. Y. L. Lee, K. Chen, A. R. Hsu, C. Xu, J. Xie,; S. Sun, X. Chen, PET/MRI dualmodality tumor imaging using arginine-glycine-aspartic (RGD) – conjugated radiolabeled iron oxide nanoparticles, J Nucl Med., 49 (2008) 1371-1379.
[115]
K. -H. P. Cho, T. Osaka, S. G. Park, The study of antimicrobial activity and preservative effects of nanosilver ingredient, ElectrochimicaActa, 51 (2005) 956-960.
[116]
S. Gurunathan, Biologically synthesized silver nanoparticles enhances antibioticactivity against Gram-negative bacteria, J. Ind. Eng. Chem., 29 (2015) 217–226.
[117]
S. Gurunathan, J. W. Han, D. N. Kwon, J. H. Kim, Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria, Nanoscale Res. Lett. 9 (2014) 373.
[118]
J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramírez, M. J. Yacaman, The bactericidal effect of silver nanoparticles. Nanotechnology 16 (2005) 2346–2353.
[119]
S. Pal, Y. K. Tak, J. M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli, Appl. Environ. Microbiol, 73 (2007) 1712–1720.
[120]
P. Sanpui, A. Murugadoss, P. V. Prasad, S. S. Ghosh, A. Chattopadhyay, The antibacterial properties of a novel chitosan-Ag-nanoparticle composite. Int. J. Food Microbiol, 124 (2008) 142–146.
[121]
S. Pal, E. J. Yoon, Y. K. Tak, E. C. Choi, J. M. Song, Synthesis of highly antibacterial nanocrystalline trivalent silver polydiguanide, J. Am. Chem. Soc., 131 (2009) 16147–16155.
[122]
C. Baker, A. Pradhan, L. Pakstis, D. J. Pochan, S. I. Shah, Synthesis and antibacterial properties of silver nanoparticles, J. Nanosci. Nanotechnol., (2005) 5244–249.
[123]
K. Roy, C. K. Sarkar, C. K. Ghosh, Plant-mediated synthesis of silver nanoparticles using parsley (Petroselinumcrispum) leaf extract: spectral analysis of the particles and antibacterial study, Applied Nanoscience, 5 (8) (2015) 945-951.
[124]
W. W. Zhang, Research and development for antibacterial materials of silver nanoparticle, New Chem. Mater., 31 (2003) 42-44.
[125]
K. Zodrow, L. Brunet, S. Mahendra, D. Li, A. Zhang, Q. Li, P. J. Alvarez, Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal, Water Res., 43 (2009) 715–723.
[126]
V. Gopinath, P. Velusamy, Extracellular biosynthesis of silver nanoparticles using Bacillus sp GP-23 and evaluation of their antifungal activity towards Fusariumoxysporum, Spectrochim. ActaA, 106 (2013) 170–174.
[127]
H. H. Lara, N. V. Ayala-Nunez, L. Ixtepan-Turrent, C. Rodriguez-Padilla, Mode of antiviral action of silver nanoparticles against HIV-1. J. Nanobiotechnol., 8 (1) (2010).
[128]
Xiang, D. X.; Chen, Q.; Pang, L.; Zheng, C. L. (2011). Inhibitory effects of silver nanoparticles on H1N1 influenza a virus in vitro. J. Virol. Methods, 178, 137–142.
[129]
D. X. Xiang, Y. Zheng, W. Duan, X. Li, J. Yin, S. Shigdar,; M. L. O’Connor,; M. Marappan, X. Zhao, Y. Miao, B. Xiang, C. Zheng, Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo, Int. J. Nanomed., 8 (2013) 4103–4113.
[130]
J. C. Trefry, D. P. Wooley, Silver nanoparticles inhibit vacciniavirus infection by preventing viral entry through a macropinocytosis-dependent mechanism. J. Biomed. Nanotechnol, 9 (2013) 1624–1635.
[131]
S. Gaikwad, A. Ingle, A. Gade, M. Rai, A. Falanga, N. Incoronato, L. Russo, S. Galdiero, M. Galdiero, Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3, Int. J. Nanomed., 8 (2013) 4303–4314.
[132]
N. Khandelwal, G. Kaur, K. K. Chaubey, P. Singh, S. Sharma, A. Tiwari, S. V. Singh, N. Kumar, Silver nanoparticles impair Peste des petits ruminants virus replication. Virus Res., 190 (2014) 1–7.
[133]
E. K. F. Elbeshehy, A. M. Elazzazy, G. Aggelis, Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens, Front Microbiol., 6 (2015) 453.
[134]
A. M. Fayaz, Z. Ao, M. Girilal, L. Chen, X. Xiao, P. Kalaichelvan, X. Yao, Inactivation of microbial infectiousness by silver nanoparticles-coated condom: A new approach to inhibit HIV- and HSV-transmitted infection, Int. J. Nanomed., 7 (2012) 5007–5018.
[135]
S. A. Eming, T. Krieg, J. M. Davidson, Inflammation in wound repair: Molecular and cellular mechanisms, J. Investig. Dermatol, 127 (2007) 514–525.
[136]
J. W. Wiechers, N. Musee, Engineered Inorganic Nanoparticles and Cosmetics : Facts, Issues, Knowledge Gaps and Challenges, 2010.
[137]
R. K. Gautam, M. C. Chattopadhyaya, Nanotechnology for water cleanup, in nanomaterials for waste water remediation, Butterworth Heinemann, Boston, (2016) 1-18.
[138]
P. G. Tratnyek, R. L. Johnson, Nanotechnologies for environmental cleanup. Nano today 1 (2) (2006) 44-48.
[139]
N. C. Mueller, B. Nowack, Nanoparticles for remediation: solving big problems with little particles. Element 6 (6) (2010) 395-400.
[140]
Y. Zhang, B. Wu, H. Xu, H. Liu, M. Wang, Y. He, Nanomaterial-enabled water and wastewater treatment, Nanoimpact, 3-4 (2016) 22-37.
[141]
M. Hua, S. Zhang, W. Pan, L. Lv, Q. Zhang, Heavy metals removal from water/wastewater by nanosized metal oxide: a review, Journal of hazardous materials, 211-212 (2012) 317-331.
[142]
K. Achla, S. K. Singh, Removal of heavy metals by nanoadsorbents: a review. Journal of environment and biotechnology research, 6 (1) (2017) 96-104.
[143]
A. R. Contreras, A. Garcia, G. Edgar, E. Casals, V. Puntes, A. Sanchez, Potential use of CeO2, TiO2 and Fe3O4 nanoparticles for the removal of cadmium from water. Desalination and water treatment, 41 (1-3) (2012) 296-300.
[144]
A. R. Contreras, A. Garcia, E. Casals, V. Puntes, D. Komilis, A. Sanchez, X. Font, The use certain cerium oxide (CeO2) nanoparticles for the adsorption of dissolved cadmium (II), lead (II), and chromium (IV) at different pHs in single and multi-component systems. Global next journal 17 (3) (2015) 536-543.
[145]
R. Kessler, Engineered Nanoparticles in Consumer Products: Understanding a New Ingredient, Environ Health Perspect 119 (3) (2011) A120–A125.
[146]
G. Oberdörster, E. Oberdörster, J. Oberdörster, Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles, Environ. Health Perspect, 113 (2005) 823–839.
[147]
L. Wolfgang, E. Heinz, S. K. Oliver, B. Leif, Application of Nanotechnologies in the Energy Sector, Hessen Trade & Invest GmbH, Germany, 2015.
[148]
S. Chaturvedi, P. N. Dave, N. K. Shah, Applications of nano-catalyst in new era, Journal of Saudi Chemical Society, 16 (2012) 307–325.
[149]
J. B. Galchar, Production of biodiesel using nano-catalysts, Review study. International Journal of Engineering Development and Research 5 (1) (2017) 485- 488.
[150]
E. Serrano, G. Rus, J. Garcí´a-Martí´nez, Nanotechnology for sustainable energy, Renewable and Sustainable Energy Reviews 13 (2009) 2373–2384.
[151]
K. Tilak, G. Siva Kumar, Nano-Technology Fuel Cells. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) 11 (4) (2014) 4-8.
[152]
Klaus-Joerger, E. Olsson, C. G. Granqvist, Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science, Trends in Biotechnology, 19 (2001) 15-20.
[153]
K. H. P. Hong, I. H. Sul, J. H. Youk, T. J. Kang, Preparation of antimicrobial poly (vinyl alcohol) nanofibers containing silver nanoparticles, J Polym. Sci. Part B PolymPhys, 44 (2006) 2468-2472.
[154]
T. Mazhar, V. Shrivastava, R. S. Tomar, Green Synthesis of Bimetallic Nanoparticles and its Applications: A Review, J. Pharm. Sci. & Res. 9 (2) (2017) 102-110.
[155]
C. C. Chien, K. T. Jeng, Noble metal fuel cell catalysts with nano-network structures. Mater Chem Phys., 103 (2007) 400–6.
[156]
W. C. Choi, S. I. Woo, Bimetallic Pt–Ru nanowire network for anode material in a direct-methanol fuel cell, J Power Sources 124 (2003) 420–425.
[157]
C. Wang, M. Waje, X. Wang, J. M. Tang, R. C. Haddon, Y. Yan, Proton exchange membrane fuel cells with carbon nanotube based electrodes, Nano Lett; 4 (2004) 345–348.
[158]
Y. Shao, J. Liu, Y. Wang, Y. Lin, Novel catalyst support materials for PEM fuel cells: current status and future prospects. J Mater Chem; 19 (2009) 46–59.