Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
Characterizations of Spharelite ZnS:Sn Thin Film for Applications
Current Issue
Volume 5, 2019
Issue 2 (March)
Pages: 22-28   |   Vol. 5, No. 2, March 2019   |   Follow on         
Paper in PDF Downloads: 27   Since Jun. 27, 2019 Views: 1008   Since Jun. 27, 2019
Authors
[1]
Joseph Abiodun Amusan, Department of Physics, University of Port Harcourt, Port Harcourt, Nigeria.
[2]
Esijolomi Benjamin Otokunefor, Department of Physics, University of Port Harcourt, Port Harcourt, Nigeria.
Abstract
The thermally evaporated ZnS thin film has been successfully grown and doped with Sn using vacuum evaporator. XRD spectra revealed cubic, Spharelite, ZnS (h k l) = (2 2 0) film doped with Sn at 2θ = 47.48°, lattice spacing, d = 1.91.The ZnS:Sn films roughness values of Ra = 17.34nm and Rq = 27.01nm are obtained from the film deposited at 100°C and at thickness of 500nm. SEM revealed densely packed, big grains, pin-hole free and the films uniformly covered the surface of glass substrates. The grain size is about 2µm. Zn, Sn and S with artefacts such as O2, Si, Mg, Ca and Na with their compositional percentages were identified by EDX. The energy bandgap of Spharelite ZnS:Sn film was found to be 3.80eV at 100°C with thickness 500nm. The average sheet resistance, Rs is 11.47 Ω and the average resistivity, ρ is found to be 1.833 x 10-3Ω-cm.
Keywords
Sphalerite ZnS, Thermal Evaporator, Energy Bandgap, Optical Transmittance and X-Ray Diffraction
Reference
[1]
Gangopadhyay U., Kim K., Dhungei S. K., Saha H. and Yi J. (2007): Application of CBD-Zinc Sulfide Film as an Antireflection Coating on Very Large Area Multicrystalline Silicon Solar Cell; Advances in optoelectronics, Hindawi Publishing Cooperation, Vol. 2007, Article ID 18619. Doi: 10.1155/2007/18619.
[2]
Elidrissi B., Addou M., Regragui M., Bougrine A., Kachouane A. and Bernede J. C. (2001): Structure, Composition and Optical properties of ZnS thin films prepared Spray Pyrolysis, Material Chemistry and Physics, Vol. 68, No 1-3, pages 175 – 179.
[3]
Ruffiner J. A., Hilmel M. D., Mizrachi V., Stageman G.I. and Gibson U. J. (1989): Effects of low substrate temperature and ion assisted deposition on composition, optical properties and Stress of ZnS thin films, Applied optics, Vol. 28, No. 24, pages 5209.
[4]
Ledger A. M. (1979): Inhomogeneous interface laser mirror coatings, Applied Optics, Vol. 18, No. 17, pages 2979.
[5]
Potter R. R. and Sites J. R. (1983): Current-Voltage transients in (Cd, Zn) S/CuInSe2 solar cells, Applied Physics Letters, Vol. 43, No. 9, pages 843 – 845.
[6]
Reddy K.T.R. and Reddy P. J. (1992): Studies of ZnxCd1-xS films and ZnxCd1-xS/CuGaSe2 heterojunction solar cells, Journal of physics D., Vol. 25, No. 9, pages 1345 – 1348.
[7]
Gumus C. (2010): Effects of annealing on optical properties of ZnS and ZnS:Mn thin films, Journal of Optoelectronics and Advanced Materials, Vol. 12, No. 8, pages 1747 – 1751.
[8]
Pudov A., Sites J., Nakada T. (2002): 18% Efficiency Cd-Free Cu (In, Ga) Se2 Thin Film Solar cells Fabricated using Chemical Bath Deposition (CBD)-ZnS Buffer Layer, Japan Journal of Applied Physics, Vol. 41, No. 2B, pages L672.
[9]
Dona J. M., Herrero J. (1994): Development, Characterization and modelling of CuGaSe2/Cu (In, Ga) Se2 Thin Film tandem solar cells, Journal of Electrochemical Society, Vol. 141, No 1, page 205.
[10]
Afifi H. H., Mahmoud S. A. and Ashor A.(1995): Structural Study of ZnS thin films prepared by Spray Pyrolisis, Thin Solid Films, Vol. 263, No. 2, pages 248 – 251.
[11]
Johnston D. A., Carletto M.H., Reddy K.T.R., Forbes I. and Miles R. W. (2002): Chemical Bath Deposition of Zinc Sulfide based buffer layers using low toxicity materials, Thin Solid Films, Vol. 403 – 404, pages 102 – 106.
[12]
Ibanga E. J., Leluyer C., Mugmier J. (2003): Zinc Oxide Wave guide produced by thermal oxidation of chemical bath deposited Zinc Sulphide thin films, Materials Chemistry and Physics, Vol. 80, No. 2, pages 490 – 495.
[13]
Sanders B.M., and Kitai A. H. (1990): The Electrodeposition of Thin Film Zinc Sulphide from thiosulphate solution, Journal of Crystal Growth, Vol. 100, pages 405 – 410.
[14]
Porada Z. and Schabowska-Osiowska (1986): Surface Electrical Conductivity in ZnS (Cu, Cl, Mn) thin films, Vol. 145, No. 1, pages 75 – 79.
[15]
Tomomura Y;, Kitagawa M., Suzuki A. and Nakajima S. (1990): Homoepitaxial growth of ZnS single crystal thin films by molecular beam epitaxy, Journal of Crystal growth, Vol. 99, No. 1 – 4, pages 451 – 454.
[16]
Tonouchi M., Sin Y., Miyasoto T., Sakama H. and Ohmura M. (1990): Room temperature synthesis of ZnS: Mn films by H2 plasma chemical sputtering, Japanese Journal of Applied Physics, Vol. 2. Pages L2453 – L2456.
[17]
Dean P. J., Pitt A. D., Skolnick M.S., Wright P. J. and Cockayne B. (1982): Optical properties of undoped organometallic grown ZnSe and ZnS, Journal of Crystal growth, Vol. 59, No. 1 – 2, pages 301 – 306.
[18]
Briot O., Briot N., Abounadi A., Gil B., Cloitre T. and Aulombard R. I. (1994): Reflectivity Analysis of ZnS layers grown on GaAs and Si substrates by metal organic vapour-phase epitaxy, Semiconductor Science and Technology, Vol. 9, No. 2, pages 207 – 209.
[19]
Arenas O.L., Nair M.T.S. and Nair P.K. (1997): Chemical Bath Deposition of ZnS thin films and modification by air annealing, Semiconductor Science and Technology, Vol. 12, page 1323.
[20]
Tohge N., Tamaki S., Okuyama K. (1995): Formation of fine particles of Zinc Sulphide from thiourea complexes by Spray Pyrolysis, Japan Journal of Applied Physics, Vol. 34, page L207.
[21]
Kobayashi R., Sato N., Ichimura M., Arai E. (2003): Photochemical Deposition of ZnS Thin Films from C4H4KNaO6- Added Solutions, Journal of Optoelectronics and Advanced Materials, Vol. 5, No. 4, pages 893 – 898.
[22]
Nair P. K.andNair M.T.S.(1992): Chemically Deposited ZnS Thin Film, Application as substrate for chemically Deposited B2S3, CuxS and PbS Thin Films, Semiconductor Science Technology, Vol. 7, page 239.
[23]
Zhang G., Zhao J. and Green M. A. (1998): Effect of substrate heating on the adhesion and humidity resistance of evaporated MGF2/ZnS antireflection coatings and on the performance of high efficiency Silicon Solar cells, Solar Energy materials and Solar Cells, Vol. 51, No 3 – 4, pages 393 – 400.
[24]
Kumar Pawan, AparmaMisra, Kumar D., DhamaNeeraj, Sharma I. P., Dirit P. N. (2004): Structural and Optical properties of Vacuum evaporated CdxZn1-xS thin films, Optical Materials, Vol. 27, pages 261 – 264.
[25]
Amusan, J. A., Azi, S. O., Abubakar, D. A. and Zebaze Kana, M. G. (2015). Optoelectronic Characterizations of vacuum evaporated Cu2SnS3 thin films for device applications, Scientia Africana, Vol. 14, No. 1, pages 75-84.
[26]
Anuar K., Ho S. M., Tan W. T., Atan S., Kuang Z., Haron M. J. and Saravanan N. (2008): Effects of bath temperature on Electrodeposition of Cu4SnS4 thin films, Journal of Applied Science Research, Vol. 4, No. 12, pages 1701 – 1707.
[27]
Schroder D. K. (1990): Semiconductor Materials and Device Characterization, Wiley Publication, New York, page 244.
[28]
Kamoun N., Bouzovita H., Rezig B. (2007): Fabrication and Characterization of Cu2ZnSnS4 thin films deposited by Spray Pyrolisis technique, Thin Solid Films, Vol. 515, pages 5949 – 5952.
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
CONTACT US
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
E-mail:
LET'S GET IN TOUCH
Name
E-mail
Subject
Message
SEND MASSAGE
Copyright © 2013-, Open Science Publishers - All Rights Reserved