Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
High Performance Nitrogen-Doped Disordered Carbon Derived from Cirsium Setosum Anode for Sodium Ion Batteries
Current Issue
Volume 4, 2018
Issue 4 (July)
Pages: 66-73   |   Vol. 4, No. 4, July 2018   |   Follow on         
Paper in PDF Downloads: 20   Since Sep. 13, 2018 Views: 937   Since Sep. 13, 2018
Qinggang Wang, School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi’an, China; Monalisa Group Co., Ltd, Foshan, China.
Jianfeng Huang, School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi’an, China.
Caiwei Wang, School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi’an, China.
Zhanwei Xu, School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi’an, China.
Jiayin Li, School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi’an, China; Monalisa Group Co., Ltd, Foshan, China.
Yijun Liu, Monalisa Group Co., Ltd, Foshan, China.
Nitrogen-doped carbon (HNC) derived from cirsium setosum are prepared by hydrothermal carbonization with subsequant heat treatment. The obtained carbon structure was carefully characterized by X-ray diffraction, Scanning electron microscopy, Transmission electron microscopy, raman spectrum and X-ray photoelectron spectrum. The results present a rough lamellar morphology with high lattice spacing of the (002) plane in graphite structure. It is also found nitrogen was successfully doped into the disordered carbon. When employed as anodes for sodium ion batteries (SIBs), electrochemical results show that the HNC treated at 700°C exhibit a high maximum charge capacity of 296.3 mA h g-1 at a current density of 50 mA g-1. Even at a high current density of 500 m A g-1, a capacity of 204.7 mA h g-1 is maintained after 200 cycles without obvious decay. This performance is much higher than the carbon material obtain without nitrogen doping. Further research reveal the HNC sample could maintain high charge conductivity with low electron transfer resistance even after many cycles of the battery. Therefore, it is believed the doped nitrogen in our disordered carbon could not only provide many extra sodium storage sites, but also enhanced electrochemical kinetic for the charge/discharge process of Na+. Finally, the high capacity, excellent rate performance, long life cycling and ultrafast rechargeable ability enable the NC to be a promising candidate for practical SIBs.
Nitrogen-Doped Carbon, Cirsium Setosum, Sodium Ion Batteries, Low-Cost Anodes
M. Armand, J. M. Tarascon, Building better batteries, Nature 451 (2008) 652-657.
J. B. Goodenough, K. S. Park, The Li-Ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc. 135 (2013) 1167-1176.
H. Li, D. Yu, H. Ha, et al., An All-Stretchable-Component Sodium-Ion Full Battery. Adv. Mater. 29 (2017).
I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, et al., A major constituent of brown algae for use in high-capacity Li-ion batteries, Science 334 (2011) 75–79.
J. W. Xu, Y. F. Wang, Z. H. Li, et al., Preparation and electrochemical properties of carbon-doped TiO2 nanotubes as an anode material for lithium ion batteries, J. Power Sources 175 (2008) 903–908.
Y. Sun, N. Liu, Y. Cui, Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nature Energy 1 (2016) 16071.
H. G. Wang, W. Li, D. P. Liu, et al., Flexible Electrodes for Sodium-Ion Batteries: Recent Progress and Perspectives. Adv. Mater. 29 (2017).
M. Q. Zhao, C. E. Ren, Z. Ling, et al., Flexible MXene/Carbon Nanotube Composite Paper with High Volumetric Capacitance. Adv. Mater. 27 (2014) 339-345.
M. C. Lin, M. Gong, B. G. Lu, et al., An ultrafast rechargeable aluminium-ion battery, Nature 520 (2016) 324–328.
Y. Sun, J. Tang, K. Zhang, et al., Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries. Nanoscale 9 (2017) 2585.
S. Y. Hong, Y. Kim, Y. Park, et al., ChemInform Abstract: Charge Carriers in Rechargeable Batteries: Na Ions vs. Li Ions. Cheminform 6 (2013) 2067-2081.
L. David, R. Bhandavat, G. Singh, MoS2/graphene composite paper for sodium-ion battery electrodes. Acs Nano 8 (2014) 1759-1770.
Y. Liu, Y. Qiao, W. Zhang, et al., Nanostructured alkali cation incorporated δ-MnO 2 cathode materials for aqueous sodium-ion batteries. J. Mater. Chem. A 3 (2015) 7780-7785.
X. Song, X. Li, Z. Bai, et al., Morphology-dependent performance of nanostructured Ni 3 S 2 /Ni anode electrodes for high performance sodium ion batteries. Nano Energy 26 (2016) 533-540.
S. Wang, L. Xia, L. Yu, et al., Sodium Ion Batteries: Free-Standing Nitrogen‐Doped Carbon Nanofiber Films: Integrated Electrodes for Sodium-Ion Batteries with Ultralong Cycle Life and Superior Rate Capability. Adv. Energy Mater 6 (2016) n/a-n/a.
D. Yan, C. Y. Yu, Y. Bai, et al., Sn-doped TiO2 nanotubes as superior anode materials for sodium ion batteries, Chem. Commun. 51 (2015) 8261–8264.
K. F. Mak, J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nature Photonics 10 (2016) 216-226.
Y. Cai, H. Yang, J. Zhou, et al., Nitrogen doped hollow MoS 2 /C nanospheres as anode for long-life sodium-ion batteries. Chem. Eng. J. 327 (2017) 522-529.
M. M. Doeff, Y. Ma, S. J. Visco, et al., Electrochemical insertion of sodium into carbon, J. Electrochem. Soc. 140 (1993) 169-175.
R. Alcantara, J. M. J. Mateos, J. L. Tirado, Negative electrodes for lithium and sodium-ion batteries obtained by heat-treatment of petroleum cokes below 1000°C, J. Electrochem. Soc. 149 (2002) 201-205.
D. Stevens, J. Dahn, High capacity anode materials for rechargeable sodium-ion batteries, J. Electrochem. Soc. 147 (2000) 1271-1273.
R. Alcantara, J. M. J. Mateos, et al., Carbon black: a promising electrode material for sodium-ion batteries, Electrochem. Commun. 3 (2001) 639–642.
K. Chayambuka, G. Mulder, D. L. Danilov, et al., Sodium-Ion Battery Materials and Electrochemical Properties Reviewed. Advanced Energy Materials (2018) 1800079.
Y. Xiong, J. Qian, Y. Cao, et al., Graphene-supported TiO2 nanospheres as a high-capacity and long-cycle life anode for sodium ion batteries. J. Mater. Chem. A 4 (2016).
Z. Zhu, F. Cheng, Z. Hu, et al., Highly stable and ultrafast electrode reaction of graphite for sodium ion batteries. J. Power Sources 293 (2015) 626-634.
P. Thomas, D. Billaud, Sodium electrochemical insertion mechanisms in various carbon fibres, Electrochim. Acta 46 (2001) 3359-3366.
R. Alcantara, P. Lavela, G. F. Ortiz, et al., Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries, Electrochem. Solid State Lett. 8 (2005) 222–225.
S. Komaba, W. Murata, T. Ishikawa, et al., Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-Ion batteries, Adv. Funct. Mater. 21 (2011) 3859–3867.
Y. L. Cao, L. F. Xiao, M. L. Sushko, et al., Sodium ion insertion in hollow carbon nanowires for battery applications, Nano Lett. 12 (2012) 3783–3787.
T. Q. Chen, L. K. Pan, T. Lu, et al., Fast synthesis of carbon microspheres via a microwave-assisted reaction for sodium ion batteries, J. Mater. Chem. A. 2 (2017) 1263–1267.
T. Q. Chen, Y. Liu, L. K. Pan, et al., Electrospun carbon nanofibers as anode materials for sodium ion batteries with excellent cycle performance, J. Mater. Chem. A 2 (2016) 4117–4421.
L. J. Fu, K. Tang, K. P. Song, et al., Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance, Nanoscale 6 (2016) 1384–1389.
Z. H. Wang, L. Qie, L. X. Yuan, et al., Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance, Carbon 55 (2015) 328–334.
H. G. Wang, Z. Wu, F. L. Meng, et al., Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries, ChemSusChem 6 (2015) 56–60.
J. T. Xu, M. Wang, N. P. Wickramaratne, et al., High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams, Adv. Mater. 27 (2015) 2042–2048.
K. Tang, L. Fu, R. J. White, et al., Hollow carbon nanospheres with superior rate capability for sodium-based batteries, Adv. Energy Mater. 2 (2012) 873–877.
C. H. Choi, S. H. Park, S. I. Woo, Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity, ACS Nano. 6 (2012) 7084–7091.
M. M. Doeff, Y. Hu, F. M. Larnon, et al., Effect of surface carbon structure on the electrochemical performance of LiFePO4, Electrochem. Solid-State Lett. 6 (2003) A207–A209.
Y. Y. Shao, J. Xiao, W. Wang, et al., Surface-driven sodium ion energy storage in nanocellular carbon foams, Nano Lett. 13 (2013) 3909–3914.
Z. R. Ismagilov, A. E. Shalagina, O. Y. Podyacheva, et al., Structure and electrical conductivity of nitrogen-doped carbon nanofibers, Carbon 47 (2009) 1922–1929.
Z. Zhong, G. I. Lee, C. B. Mo, et al., Tailored field-emission property of patterned carbon nitride nanotubes by a selective doping of substitutional N (sN) and pyridine-like N (pN) atoms, Chem. Mater. 19 (2007) 2918–2920.
Y. Wu, S. Fang, Y. Jiang, Effects of nitrogen on the carbon anode of a lithium secondary battery, Solid State Ionics 120 (1999) 117–123.
T. Sharifi, G. Z. Hu, X. Jia, et al., Formation of active sites for oxygen reduction reactions by transformation of nitrogen functionalities in nitrogen-doped carbon nanotubes, ACS Nano 6 (2012) 8904–8912.
W. Shen, C. Wang, Q. J. Xu, et al., Nitrogen-doping-induced defects of a carbon coating layer facilitate Na-storage in electrode materials, Adv. Energy Mater. 5 (2015) 1400982
S. Y. Wang, X. S. Zhao, T. Cochell, et al., Nitrogen-doped carbon nanotube/graphite felts as advanced electrode materials for vanadium redox flow batteries, J. Phys. Chem. Lett. 3 (2012) 2164–2167.
B. S. Lee, S. B. Son, K. M. Park, et al., Anodic properties of hollow carbon nanofibers for Li-ion battery, J. Power Sources 199 (2012) 53–60.
E. Buiel, A. E. George, J. R. Dahn, On the reduction of lithium insertion capacity in hard-carbon anode materials with increasing heat-treatment temperature, J. Electrochem. Soc. 145 (1998) 2252–2257.
E. J. Yoo, J. Kim, E. Hosono, et al., Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries, Nano Lett. 8 (2008) 2277–2282.
D. A. Stevens, J. R. Dahn, An in situ small-angle X-ray scattering study of sodium insertion into a nanoporous carbon anode material within an operating electrochemical cell, J. Electrochem. Soc. 147 (2000) 4428–4431.
K. Chang, W. X. Chen, L-cysteine-assisted synthesis of layered MoS2/grapheme composites with excellent electrochemical performances for lithium ion batteries, ACS. Nano. 5 (2011) 4720–4728.
H. M. Xie, R. S. Wang, J. R. Ying, et al., Optimized LiFePO4-polyacene cathode material for lithium-ion batteries, Adv. Mater. 18 (2006) 2609–2613.
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
Copyright © 2013-, Open Science Publishers - All Rights Reserved