Pure Spin Current and Negative Differential Resistance in Born Nitride Nanoribbon Induced by Oxygen Doping
[1]
Jianbao Wu, College of Fundamental Studies, Shanghai University of Engineering Science, Shanghai, China.
Boron nitrogen nanoribbon (BNNR) is semiconductor, doping is an important way to change the size of its bandgap. In this paper, oxygen doping armchair and zigzag BNNR (aBNNR and zBNNR) were studied by density functional and non - equilibrium Green 's function method. The substitution of nitrogen atoms by the oxygen atom in the BNNR introduces impurity state between the bandgap of the BNNRs. The impurity state is spin-splitting completely, and the system behaves ferromagnetic with 1μB per supercell. The dispersive of impurity band introduced by Oxygen doping is very small, so it shows a strong localization. Considering the transport properties of oxygen-doped boron-nitrogen nanotubes, armchair type and zigzag type are different. For the aBNNR, pure spin current appears in the symmetrical range of positive and negative voltage, the peak of current is 32 μA, and the negative differential resistance is shown simultaneously. For the zBNNR, the positive and negative voltage interval is no longer symmetrical, the peak current is only 2.0 μA. BNNR doped by oxygen have unique electronic structures and transport properties, so which provide more option for optoelectronic and spintronic devices.
Boron Nitrogen Nanoribbon (BNNR), Doping, Negative Differential Resistance (NDR)
[1]
H. B. Zeng, C. Y. Zhi, Z. H. Zhang, X. L. Wei, X. B. Wang, W. L. Guo, Y. Bando, D. Golberg, “White Graphenes”: Boron Nitride Nanoribbons via Boron Nitride Nanotube Unwrapping, Nano Lett. 2010, 10: 5049-5055.
[2]
K. J. Erickson, A. L. Gibb, A. Sinitskii, M. Rousseas, N. Alem, J. M. Tour, A. K. Zettl, Longitudinal Splitting of Boron Nitride Nanotubes for the Facile Synthesis of High Quality Boron Nitride Nanoribbons, Nano Lett. 2011, 11:3221-3226.
[3]
Y. L. Liao, Z. Chen, J. W. Connell, C. C. Fay, C. Park, J. W. Kim, Y. Lin, Chemical Sharpening, Shortening, and Unzipping of Boron Nitride Nanotubes, Adv. Funct. Mater 2013, 24: 4497-4506.
[4]
V. Barone, J. E. Peralta, Magnetic Boron Nitride Nanoribbons with Tunable Electronic Properties, Nano Lett. 2008, 8:2210-2214.
[5]
C.-H. Park, S. G. Louie, Energy Gaps and Stark Effect in Boron Nitride Nanoribbons, Nano Lett. 2008, 8:2200-2203.
[6]
P. Srivastava, N. K. Jaiswal, G. K. Tripathi, Chlorine sensing properties of zigzag boron nitride nanoribbons, Solid State Commun. 2014, 185:41-46.
[7]
H. M. Rai, N. K. Jaiswal, P. Srivastava, R. Kurchania, Electronic and Transport Properties of Zigzag Boron Nitride Nanoribbons, J. Comput. Theor. Nanosci. 2013, 10:368-375.
[8]
M. Terrones, J. C. Charlier, A. Gloter, E. Cruz-Silva, E. Terres, Y. B. Li, Z. Zanolli, J. M. Dominguez, H. Terrones, Y. Bando, D. Golberg, Experimental and Theoretical Studies Suggesting the Possibility of Metallic Boron Nitride Edges in Porous Nanourchins, Nano Lett. 2008, 8:1026-1032.
[9]
F. Zheng, G. Zhou, Z. Liu, J. Wu, W. Duan, B. Gu, S. B. Zhang, Half metallicity along the edge of zigzag boron nitride nanoribbons, Phys. Rev. B 2008, 78:205415.
[10]
L. Lai, J. Lu, L. Wang, G. F. Luo, J. Zhou, R. Qin, Z. X. Gao, W. N. Mei, Magnetic Properties of Fully Bare and Half-Bare Boron Nitride Nanoribbons, J. Phys. Chem. C 2009, 113:2273-2276.
[11]
Du, S. C. Smith, G. Lu, First-principle studies of electronic structure and C-doping effect in boron nitride nanoribbon, Chem. Phys. Lett. 2007, 447:181-186.
[12]
W. Chen, Y. Li, G. T. Yu, Z. Zhou, Z. J. Chen, Electronic Structure and Reactivity of Boron Nitride Nanoribbons with Stone-Wales Defects, Chem. Theory Comput 2009, 5:3088-3095.
[13]
X. Wu, M. Wu, X. C. Zeng, Chemically decorated boron-nitride nanoribbons, Front. Phys. China 2009,4: 367-372.
[14]
J. Lopez-Bezanilla, S. Huang, H. Terrones, B. G. Sumpter, Boron Nitride Nanoribbons Become Metallic, Nano Lett. 2011, 11:3267-3273.
[15]
C.-H. Park, S. G. Louie, Energy Gaps and Stark Effect in Boron Nitride Nanoribbons, Nano Lett. 2008, 8:2200-2203.
[16]
F. W. Zheng, Z. R. Liu, J. Wu, W. H. Duan, B.-L. Gu, Scaling law of the giant Stark effect in boron nitride nanoribbons and nanotubes, Phys. Rev. B 2008, 78:085423.
[17]
Z. H. Zhang, W. L. Guo, Energy-gap modulation of BN ribbons by transverse electric fields: First-principles calculations, Phys. Rev. B 2008, 77: 075403.
[18]
J. Qi, X. Qian, L. Qi, Q. Feng, D. Shi, J. Li, Strain-Engineering of Band Gaps in Piezoelectric Boron Nitride Nanoribbons, Nano Lett. 2012, 12:1224-1228.
[19]
Properties of boron-nitride nanotubes via oxygen-doping, Solid State Communications 2009, 149:486-490.
[20]
J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejón, D. Sánchez-Portal, The SIESTA method for ab initio order-N materials simulation, J. Phys.: Condens. Matter 2002, 14: 2745-2779.
[21]
P. Ordejón, E. Artacho, J. M. Soler, Self-consistent order-N density-functional calculations for very large systems, Phys. Rev. B 1996, 53:10441.