Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
Spin Dependent Peltier Effect in Ferromagnetic Graphene / Superconducting Graphene Junction
Current Issue
Volume 2, 2015
Issue 6 (November)
Pages: 36-42   |   Vol. 2, No. 6, November 2015   |   Follow on         
Paper in PDF Downloads: 134   Since Oct. 23, 2015 Views: 1777   Since Oct. 23, 2015
Authors
[1]
Ahmed S. Abdelrazek, Faculty of Engineering, Kafr-Elsheikh University, Kafr-Elsheikh, Egypt.
[2]
Mohamed M. El-banna, Faculty of Engineering, Ain-Shams University, Cairo, Egypt.
[3]
Adel H. Phillips, Faculty of Engineering, Ain-Shams University, Cairo, Egypt.
Abstract
A spin dependent Peltier effect in graphene nanodevice is investigated. This nanodevice is modeled as ferromagnetic graphene/ superconducting graphene junction with Schottky barrier of delta-type at the interface of the junction. The Peltier coefficient is expressed in terms of spin-dependent Andreev reflection and normal reflection which will be deduced by solving Dirac-Bogoliubov-deGennes equation in one dimension. Numerical calculations are performed for two different superconducting layers under the effects of the induced ac-field and magnetic field. Results show that the present nanodevice operates only in narrow band of THz frequencies. Also, the present results might indicate that the present nanodevice is stable under the effect of magnetic field, which must be needed for quantum information processing. The present graphene nanodevice based on Peltier effect might be used as coolers for nanoelectronic devices such as nanocontrollers and computer CPUs. The present research is very important in the field of spin caloritronics on the nanoscale systems and at low temperatures.
Keywords
Spin-Caloritronics, Ferromagnetic Graphene, Superconducting Graphene, Spin Peltier Coefficient, Ac-field, Magnetic Field
Reference
[1]
J. P. Heremans, C.M. Thrush, D.T. Morelli, Thermopower enhancement in lead telluride nanostructures, Phys. Rev. B70, 115334 (2004).
[2]
J. P. Heremans, Low-Dimensional Thermoelectricity, Acta Phys. Pol. A 108, 609 (2005).
[3]
I. Zutic, J. Fabian, and S. Das Sarma, Spintronics: Fundamentals and applications Rev. Mod. Phys 76, 323 (2004).
[4]
G.E.W. Bauer, A.H. MacDonald, and S. Maekawa, Spin Caloritronics, Solid State Commun. 150, 489 (2010).
[5]
K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa and E. Saitoh, Observation of the spin Seebeck effect. Nature 455, 778 (2008).
[6]
C. M. Jaworski, J. Yang,S. Mack,D. D. Awschalom, J. P. Heremansand R. C. Myers, Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nature Materials 9, 898 (2010).
[7]
K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa,H. Kawai, G. E. W. Bauer, S. Maekawaand E. Saitoh, Spin Seebeck insulator. Nature Materials 9, 894 (2010).
[8]
A. Slachter, F. L. Bakker, J. - P Adam and B. J. van Wees, Thermally driven spin injection from a ferromagnet into a non-magnetic metal. Nature Phys. 6, 879 (2010).
[9]
J.–C Le Breton, S. Sharma, H. Saito, S. Yuasa, and R. Jansen, Thermal spin current from a ferromagnet to silicon by Seebeck spin tunneling. Nature 475, 82 (2011).
[10]
M. Hatami and G. E. W. Bauer, Thermal spin-transfer torque in magnetoelectronic devices. Phys. Rev. Lett. 99, 066603 (2007).
[11]
H. Yu, S. Granville, D. P. Yu and J. – Ph Ansermet, Evidence for Thermal Spin-Transfer Torque. Phys. Rev. Lett. 104, 146601 (2010).
[12]
T. T. Heikkilä, M. Hatami, and G. E. W. Bauer, Spin heat accumulation and its relaxation in spin valves. Phys. Rev. B 81, 100408(R) (2010).
[13]
M. Hatami, G. E. W. Bauer, Q. Zhang and P. J. Kelly, Thermoelectric effects in magnetic nanostructures. Phys. Rev. B 79, 174426 (2009).
[14]
F. L. Bakker, A. Slachter, J. P. Adam and B. J. van Wees, Interplay of Peltier and Seebeck effects in nanoscale nonlocal spin valves, Phys. Rev. Lett. 105 (13), 136601 (2010).
[15]
F. Giazotto, T. T. Heikkilä, A. Luukanen, A. M. Savin, and J. P. Pekola, Opportunities for mesoscopics in thermometry and refrigeration: physics and applications. Rev. Mod. Phys. 78, 217 (2006).
[16]
L. Gravier, S. Serrano-Guisan, F. Reuse and J.-Ph Ansermet, Spin-dependent Peltier effect of perpendicular currents in multilayered nanowires. Phys. Rev. B 73, 052410 (2006).
[17]
H. Julian Goldsmid, Introduction to Thermoelectricity (Springer-Verlag Berlin Heidelberg (2010)).
[18]
Arafa H. Aly and A. H. Phillips, Peltier effect of superconductor-semiconductor mesoscopic device. Applied Sciences, 7, 10 (2005).
[19]
G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee and L. Colombo, Electronics based on two-dimensional materials, NatureNanotech. 9, 768 (2014).
[20]
Mina D. Asham, Walid A. Zein, Adel H. Phillips, Photo-induced thermo-spin ferromagnetic graphene field effect transistor, Open Science Journal of Modern Physics vol. 1 (5), 31 (2014).
[21]
Ahmed S. Abdelrazek, Mohamed M. El-banna and Adel H. Phillips, Coherent Manipulation of Spin Thermoelectric Dynamics in Graphene Nanodevice, American Journal of Modern Physics and Applications (Open Science online) 2(4), pp.67-75 (2015).
[22]
C.W.J. Beenakker, Specular Andreev reflection in graphene, Phys. Rev. Lett. 97, 067007 (2006).
[23]
Y. Asano, T. Yoshida, Y. Tanaka and A.A. Golubov, Electron transport in a ferromagnet superconductor junction on graphene, Phys. Rev. B,78, 014514 ( 2008).
[24]
C.W.J. Beenakker, Andreev reflection and Klein tunneling in graphene, Rev. Mod. Phys. 80, 1337, (2008).
[25]
Atef F. Amin, G. Li, Adel H. Phillips, and Ulrich Kleinekathofer, Coherent control of the spin current through a quantum dot, Europ. Phys. J.B, 68,103 (2009).
[26]
W. A. Zein, N. A. Ibrahim, and A. H. Phillips, Spin polarized transport in an AC-driven quantum curved nanowire, Physics Research International, 5 pages, article ID-505091, ( 2011).
[27]
M. J. M. de Jang, and C. W. J. Beenakker, Andreev-reflection in ferromagnetic superconductor junctions, Phys. Rev. Lett. 74, 1657 (1995).
[28]
Y. Yan, Q-F. Liang, H. Zhao and C-Q. Wu, Thermoelectric properties of hexangonal graphene quantum dots, Phys. Lett. A, 376, 1154, (2012).
[29]
H. Haugen, D. H. Hernando and A. Brataas, Spin transport in proximity-induced ferromagnetic graphene, Phys. Rev. B, 77, 115406 (2008).
[30]
H.B. Heersche, J.P. Herrero,J. B. Oostinga, L. M. K. Vandersypen and A. F. Morpurgo, Bipolar supercurrent in graphene, Nature (London) 446, 56 (2007).
[31]
S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Electronic transport in two-dimensional graphene, Rev. Mod. Phys. 83, 407 (2011).
[32]
M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Giant Magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472 (1988).
[33]
G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange, Phys. Rev. B 39, 4828 (1989).
[34]
Ahmed S. Abdelrazek, Mohamed M. El-banna and Adel H. Phillips, Quantum Spin Transport Characteristics in Graphene Field Effect Transistor, Open Science Journal of Modern Physics, 2(5) 55 (2015).
[35]
G. I. Oya, E. J. Saur, Preparation of Nb3Ge films by chemical transport reaction and the critical properties, J. Low Temperature Phys.34 (5-4), 569 (1979).
[36]
W. Lin, M. Hehn, L. Chaput, B. Negulescu, S. Andrieu, F. Montaigne and S. Mangin, Giant spin-dependent thermoelectric effect in magnetic tunnel junctions. Nature Communications 3, 744 (2012).
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
CONTACT US
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
E-mail:
LET'S GET IN TOUCH
Name
E-mail
Subject
Message
SEND MASSAGE
Copyright © 2013-, Open Science Publishers - All Rights Reserved