Strain Effect on Transport Properties of Chiral Carbon Nanotube Nanodevice
[1]
H. A. El-Demsisy, Faculty of Engineering, Benha University, Benha, Egypt.
[2]
M. D. Asham, Faculty of Engineering, Benha University, Benha, Egypt.
[3]
D. S. Louis, Faculty of Engineering, Ain-Shams University, Cairo, Egypt.
[4]
A. H. Phillips, Faculty of Engineering, Ain-Shams University, Cairo, Egypt.
The quantum transport properties of chiral single walled carbon nanotube (SWCNT) quantum dot nanodevice are investigated under the effect of tensile strain. This nanodevice is modeled as single walled carbon nanotube quantum dot connected to metallic leads. These two metallic leads operate as a source and a drain. The conducting substance is the gate electrode in this three-terminal nanodevice. Another metallic gate is used to govern the electrostatics and the switching of the carbon nanotube channel. The substances at the carbon nanotube quantum dot/ metal contact are controlled by the back gate. The electric current is deduced using Landauer-Buttiker formula. Results show that both energy gap and the electric current of the present nanodevice depend very sensitively on the chiral indices of SWCNT, its diameter and its chiral angles. Also, oscillatory behavior of the current is observed which is due to Coulomb blockade oscillations and Fano resonance. The present results are found to be in concordant with those in the literature, which confirm the correctness of the proposed model. This study is valuable for nanotechnology applications, e.g., soft and flexible nanoelectronics, nanoelectromechanical resonators and photodetectors.
SWCNT Quantum Dot, Strain Effect, Ac-field, Magnetic Field, Nanodevice
[1]
B. Bhushan (Ed.), Handbook of Nanotechnology, (Springer-Verlag Berlin Heidelberg 2010).
[2]
O. Tomoya, F. Yoshitaka, T. Shigeru, First-Principles Calculation Methods for Obtaining Scattering Waves to Investigate Transport Properties of Nanostructures, Quantum Matter, 1, No.1, 4 (2012).
[3]
A. Herman, Tip-Based Nanofabrication as a Rapid Prototyping Tool for Quantum Science and Technology, Rev. Theor. Sci. 1, 3 (2013).
[4]
S. Iijima, Helical microtubules of graphitic carbon, Nature (London) 354, 56 (1991).
[5]
M.S.Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes: Synthesis, Structure, properties, and Applications, ( Springer Berlin, 2001).
[6]
M. Meyyappan, Carbon Nanotubes: Science and Applications, (Boca Raton, Fla.: CRC, 2005).
[7]
H.S. Philip Wong and D. Akinwande, Carbon Nanotube and Graphene Device Physics, (Cambridge University Press, 2011).
[8]
R.Klingeler, R.Sim, Carbon Nanotubes for Biomedical Applications (Springer, Berlin, 2011).
[9]
Y. Zhang, L. F.Duan, Y. Zhang, J. Wang, H.Geng, Q. Zhang, Advances in Conceptual Electronic Nanodevices based on 0D and 1DNanomaterials, NANO-MICRO Letts.6 (1), pp.1-19 (2014).
[10]
R Saito, G Dresselhaus, M. S. Dresselhaus, Physical properties of carbon nanotubes, (London, U.K: Imperial College press, 1998).
[11]
E. D.Minot, Y.Yaish, V.Sazonova, Ji-Y. Park, M. Brink, L. Paul, P.McEuen, Tuning carbon nanotube band gaps with strain, Phys. Rev. Letts. 90, No.15, 156401-1 (2003).
[12]
J-C Charlier, X.Blase, S.Roche, Electronic and transport properties of nanotubes. Rev. Mod. Phys.79, 677–732 (2007).
[13]
A.Kleiner, S.Eggert, Band gaps of primary metallic carbon nanotubes, Phys. Rev. B63, 073408 (2001).
[14]
L. Yang, J. Han, Electronic structure of deformed carbon nanotube, Phys. Rev. Lett.85, 154 (2000).
[15]
A.Maiti, A.Svizhenko, M. P. Anantram,Electronic transport through carbon nanotubes -effects of structural deformation and tube chirality, Phys. Rev. Lett.88, 126805 (2002).
[16]
S.-P.Ju, M.-H.Weng, W.-S. Wu, MD investigation of the collective carbon atom behavior of a (17, 0) zigzag single wall carbon nanotube under axial tensile strain, J. Nanopart. Res. 12, pp.2979–2987 (2010).
[17]
T. W. Tombler, C. Zhou, L. Alexseyev, J. Kong, H. Dai, L. Liu, C. S. Jayanthi, M. Tang, S. Wu, Reversib le electromechanical characteristics of carbon nanotubes under local-probe manipulation, Nature 405, 769 (2000).
[18]
J. Cao, Q. Wang ,H. Dai, Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching, Phys. Rev. Lett.90, 157601 (2003).
[19]
N. Sinha, J. Ma, J. T.W. Yeow, Carbon Nanotube based sensors, J. Nanoscience and Nanotechnology, 6, pp.573-590 (2006).
[20]
H. A. El-Demsisy, M. D. Asham, D. S. Louis, A. H. Phillips, Coherent Photo-Electrical Current Manipulation of Carbon Nanotube Field Effect Transistor Induced by Strain, Open Science J. Modern Physics2(3), pp.27-31 (2015).
[21]
A. M. El-Seddawy, W. A. Zein, A. H. Phillips, Carbon Nanotube-based nanoelectromechanical resonator as strain sensor. J. Comput. AndTheor. Nanosci.11, No.4, pp.1174-1177 (2014).
[22]
K.Bosnick, N.Gabor, P.McEuen, Transport in carbon nanotube p-i-n diodes, Appl. Phys. Lett.89, 163121(2006).
[23]
A.N. Mina, A. A. Awadallah, A. H. Phillips,R. R. Ahmed, Microwave Spectroscopy of Carbon Nanotube Field Effect Transistor, Progress in Physics4,61 (2010).
[24]
A. A. Awadallah, A. H. Phillips, A. N. Mina, R. R. Ahmed, Photon-assisted Transport in Carbon Nanotube Mesoscopic Device,Int. J. Nanoscience10, No3, 419 (2011).
[25]
G. Platero, R. Aguado, Photon assisted transport in semiconductor nanostructures, Phys. Rep.395, 1(2004).
[26]
T. Nakanishi, A. Bachtold, C. Dekker, Transport through the interface between a semiconducting carbon nanotube and a metal electrode, Phys. Rev. B66, No7, 073307-4(2002).
[27]
S.Heinze, M.Radosavljevic, J. Tersoff, P.Avouris, Unexpected scaling of the performance of carbon nanotube Schottky-barrier transistors, Phys. Rev. B68, No23, 235418-5(2003).
[28]
S. Bhattacharya, D. De, S. Ghosh, K. P. Ghatak, Fowler-Nordheim Field Emission from Carbon Nanotubes Under Intense Electric Field, J. Comput. Theor. Nanosci.10, No.3, 664 (2013).
[29]
V. Gayathri, R. Geetha, Carbon nanotube as NEMS sensor- effect of chirality and stone- vales defect intend, J. Phys.: Conf. Ser.34, pp.824-828 (2006).
[30]
A. N. Mina, A. A. Awadallah, A. H. Phillips, R. R. Ahmed. Simulation of the Band Structure of Graphene and Carbon Nanotube. J. Phys.: Conf. Ser. 343, 012076 (2012).
[31]
A. Javey, J. Kong (Editors), Carbon Nanotube Electronics, (Springer Science + Business Media, LLC 2009).
[32]
K. Kato, T. Koretsune, S. Saito, Twisting effects on carbon nanotubes: A first-principles study with helical symmetry operations, J. Phys. Conf. Ser.302, 012007 (2011).
[33]
B. G. M. Vieira, E. B. Barros, D. G. Vercosa, G. Samsonidze, A. G. S. Filho, M. S.Dresselhaus, Fermi – Energy – Dependent Structural Deformation of Chiral Single-Wall Carbon Nanotubes, Phys. Rev. Appl.2, 014006 (2014).
[34]
A. H. Phillips, N. A. I.Aly, K.Kirah, H. E. ElSayes, Transport Characteristics of MesoscopicRF-Single Electron Transistor, Chin. Phys. Lett.25, 250 (2008).
[35]
A. S. Attallah, A. H. Phillips, A. F. Amin, M. A. Semary, Photon-assisted Transport Characteristics Through Quantum Dot Coupled to Superconducting Reservoirs, Nano Brief Reports and Reviews1, 259 (2006).
[36]
C. Meyer, J. M. Elzerman, L. P. Kouwenhoven, Photon-assisted tunneling in a carbon nanotube quantum dot, Nano Lett.7, 295 (2007).
[37]
A. A.Awadalla, A. H. Phillips, Thermal shot noise through boundary roughness of carbon nanotube quantum dots, Chin. Phys. Lett.28, No.1, 017304-1 (2011).
[38]
V. Krstic, S. Roth, M. Burghard, K. Kem,G. L. J. A. Rikken, magneto-chiral anisotropy in charge transport through single walled carbon nanotubes, J. Chem. Phys.117, No.24, 11315 (2002).
[39]
A. E Miroshnichenko, F. Flach, Y. S. Kivshar, Fano resonance in nanoscale structures, Rev. Mod. Phys.82 (3), pp.2257-2298, (2010).
[40]
S. H. Chae, Y. H. Lee, Carbon nanotubes and graphene towards soft Electronics, Nano Convergence 15, 1 (2014).