Internal Pressure of Saturated Fluid Alkali Metals at Elevated Temperatures
The alkali metals are typical metals. They exhibit well characterized homologous behavior. Alkali metals have complicated structure and molecular interaction. These characteristic properties of alkali metals prompt the investigation of the structure and interaction at the molecular level. Moreover, the alkali metals have high heats of vaporization, high thermal conductivity, low viscosity and a wide range of liquid densities. This makes them good heat transfer fluids in reactors operating at high temperature and at high-energy rate. These facts underscore the scientific and technological significance of the study of the thermodynamic properties of fluid alkali metals. One of the commonly employed approaches in the study of thermodynamic properties of substances is the development of accurate equations of state. The known two-parameter van der Waals equation of state does not precisely describe the thermodynamic properties of fluid alkali metals. To improve its accuracy, a third parameter is introduced in the expression for the internal pressure. The newly introduced substance-specific parameter is determined through experimental data on the vapor – liquid critical – point parameters and it is found to be a thermodynamic similarity parameter for alkali metals. The three-parameter generalized van der Waals equation of state is employed to determine the internal pressure of fluid alkali metals in the range from 0.9 times the critical temperature to the critical temperature. The knowledge of the internal pressure is essential in the study of liquid – vapor phase transition of fluid alkali metals. However, the experimental determination of the internal pressure of fluid alkali metals, particularly at high temperatures, encounters severe difficulties due to the fact that the alkali metals are highly reactive at high temperatures. Hence arises the necessity for theoretical study of the internal pressure of fluid alkali metals. In this work, the internal pressure of fluid alkali metals, in the range from 0.9 times the critical temperature to the critical temperature, has been determined through the three- parameter generalized van der Waals equation of state. As the generalized van der Waals equation of state satisfactorily describes the thermodynamic properties of fluid alkali metals in the temperature range from boiling point to critical point, the values of the internal pressure of fluid alkali metals determined on the basis of the generalized van der Waals equation of state may be considered to be the reliable and recommended values.
Alkali Metals, Corresponding State, Critical Point, Internal Pressure, Liquid-Vapor Phase Transition, Equation of State
[1]
J. Ouellete, S. H. Williams, Am. J. Chem. vol. 93, 466 (1971).
[2]
A. A. Likal'ter, H. Schneidenbach, PhysicaA, 293, 3-4 (2000).
[3]
M. H. Ghatee, M. Bahadori, J. Phys. Chem. B105, 11256 (2001).
[4]
W. C, Pilgrim, S. Hosokawa, C. Morkel, Contrib. Plasma Phys., 41, 283 (2001).
[5]
H. Eslami, S. Sheikh, A. Boushehri, HighTemp. -HighPress, 33, 237 (2001).
[6]
H. Eslami, S. Sheikh, A. Boushehri, HighTemp. -HighPress, 33, 725 (2001).
[7]
A. A. Likal'ter, H. Hess, Schneidenbach, Phys. Scripta, 66, 89 (2002).
[8]
F. Hensel, W. C. Pilgrim, Contrib. Plasma Phys., 43, 306 (2003).
[9]
L. Maftoon-Azad, A. Boushehri, Int. J. Thermophysics, 25, 893 (2004).
[10]
V. Rogankov, T. Bedrova, Visnyk Lviv Univ. Ser. Physics, 38, 197 (2005).
[11]
E. K. Goharshadi, A. R. Boushehri, J. Nucl. Mat., 348, 40 (2006).
[12]
K. Matsuda, M. Inui, K. Tamura, Sci, Techn. Adv. Mat., 7, 483 (2006).
[13]
F. Mozaffari, H. Eslami, A. Boushehri, Int. J. Thermophys., 28, 1 (2006).
[14]
O. M. Krasilnikow, F. Metalov, I. Metalovedenie, 103, 306 (2007).
[15]
O. D. Zhakhrova, A. M. Semenov, Teplofiz. Vys. Temp., 46, 59 (2008).
[16]
L. Maftoon-Azad, H. Eslami, A. Boushehri, Fluid Phase Equilbria, 263, 1 (2008).
[17]
G. G. N. Angilella, N. H. March, R. Pucci, Phys. Chem. Liq., 46, 86 (2008).
[18]
LA. Blagonravov, Teplofiz. Vys. Temp., 46, 680 (2009).
[19]
N. Farzi, R. Srfari, F. Kermanpour, J. Mol. Liq., 137, 159 (2009).
[20]
D. N. Kagan, G. A. Krechetova, E. E. Shpil'rain, HighTemp. 48, 506-510 (2010).
[21]
V. A. Krashaninin, A. A. Yur'ev, E. A. Yur'ev, Russian Metallurgy, 709-714 (2011).
[22]
N. E. Dubinin, A. A. Yurgev, N. A. Vatolin, J. of Structural Chem., 53, 468-475 (2012).
[23]
V. A. Krashaninin, N. E. Dubinin, N. A. Vatolin, Doklady Phys, 58, 339-342 (2013).
[24]
V. I. Rachkov, M. N. Amol'dov, A. D. Efanov, S. G. Kalyakin, F. A. Kozlov, N. I. Loginov, Yu. I. Orlov, A. P. Sorokin, Thermal Engineering, 61, 337-347 (2014).
[25]
M. T. Bouazza, L. Baggami, M. Bouledroua, Int. J. Thermophys., 35, 327-335 (2014).
[26]
L. Biolsi, Int. J. Thermophys., 35, 1785-1802 (2014).
[27]
D. K. Belashchenko, Russian J. Of Phys. chem. A, 89, 2051–2063 (2015).
[28]
L. Biolsi, M. Biolsi, Int. J. Thermophys., 37, 42 (2016).
[29]
Q. Liu, Int. J. Thermophys., 37, 65 (2016).
[30]
A. V. Mokshin, R. M. Khusnutdinow, A. R. Akhmerova, A. R. Musabirova, JETPLetters, 106, 366-370 (2017).
[31]
Zhanjiang, PR. China, J. ofMaterialScience&Engineering, 6, 349 (2017).
[32]
A. Heinzel, W. Hering, J. Konys, L. Marocco, K. Litfin, G. Muller, J. Pacio, C. Shroer, R. Stieglitz, L. Stoppel, A. Weisenburger, T. Wetzel, Technology, 5, 1026-1036 (2017).
[33]
X. Li, S. Li, H. Ren, J. Yang, Y. Tang, Nanomaterials, 7, 184 (2017).
[34]
H. Nikoofard, F. Bakhtiar, Physics and Chemistry of Liquids, 57, 629-639 (2018).
[35]
V. P. Stepanov, Russian J. Physical Chemistry A, 93, 799-803 (2019).
[36]
T. V. Gordeychuk, M. V. Kazachek, Russian J. Physical Chemistry A, 93, 1000-1003 (2019).
[37]
J. Westin, A course in Thermodynamics, v. 1, Taylor and Francis, New York (1979).
[38]
N. Shanthi, P. Sabarathinam, Alamelumangai, J. Madhumitha, M. Emayavaramban, Int. letters of Chem., Phy and Astronomy, 5, 1-7 (2012).
[39]
V. N. Kartsev, M. N. Rodnikova, and S. N. Shtykov, Journal of Structural Chemistry. 45 (1), 96-99 (2004).
[40]
Y. Marcus, Inter. J. Phys. And Chem., 55 (4), 522-531 (2016).
[41]
A. K. Nain and P. Droliya, Ind. J. Chem. 55A, 23-33 (2016).
[42]
M. Roth, Molecules, 24, 961 (2019).
[43]
Y. Marcus, Internal pressure of liquid and solutions’’, Chemical Reviews, 113, 6536-6551 (2013).
[44]
R. K. Shukla, K. Tenguriya, S. Shukla, M. Tiwari, S. Dwired, Int. J. Chem. Tech. 23, 469-477 (2016).
[45]
R. C. Malan, A. M. Vora, J. of Nano–and Electronic Physics, 10, 1-4 (2018).
[46]
E. V. Ivanov, V. K. Abrosimov, J. Stuctural Chem. 46, Issue 5, 856-861 (2005).
[47]
M. N. Berberan-Santos, E. N. Bodunor, J. Mathematical society, 43 (4), 1437-1457 (2008).
[48]
D. Prakash, M. Mukunthan, Int. J. Inn. Res. Sci. Eng. Techn. 2 (12), 7252-7257 (2013).
[49]
M. M. Martynyuk, R. Balasubramanian, Int. J. Thermophys., 16 (2), 533-543 (1995).
[50]
R. Balasubramanian, Ph. D Thesis, Russian Peoples’ Friendship University, Moscow, Russia (1993).
[51]
R. Balasubramanian, High Temp. –High Press, 34, 335 (2002).
[52]
R. Balasubramanian, Int. J. Thermophys., 24, 201-206 (2003).
[53]
R. Balasubramanian, J. Chem., Eng. Jpn, 37, 1415 (2004).
[54]
R. Balasubramanian, PhysicaB, 381, 128 (2006).
[55]
R. Balasubramanian, Int. J. Thermophys., 27, 1494-1500 (2006).
[56]
R. Balasubramanian, J. Nucl. Mat., 366, 272 (2007).
[57]
R. Balasubramanian, Asia-PacificJ. Chem. Eng., 3, 90 (2008).
[58]
R. Balasubramanian, J. of MolecularLiquids, 151, 130-133 (2010).
[59]
R. Balasubramanian, Thermochimica Acta, 566, 233-237 (2013).
[60]
R. Balasubramanian, A. Kowsarbanu, A. Ramesh Inter. J. of Sci. and Research, 1372-1378 (2017).
[61]
R. Balasubramanian, A. Kowsarbanu, A. Ramesh, Open Sci. of J. Modern Phy, 5 (2), 24-31, (2018).
[62]
R. Balasubramanian, A. Ramesh, A. Kowsarbanu, American J. of Chemistry and Mat. Sci., 5 (6), 91-98, (2018).
[63]
R. Balasubramanian, K. Ruba, American J. of Chemistry and Mat. Sci., 6 (2), 44-51, (2019).
[64]
R. Balasubramanian, M. Sakthivel, American J. of Chemistry and Mat. Sci., 6 (2), 36-43, (2019).
[65]
R. Balasubramanian, S. Anupriya, American J. of Chemistry and Mat. Sci., 6 (2), 52-57, (2019).
[66]
Filippov L. P, “Estimation of Thermophysical Propertics of Liquids and Gases”, Energoatomizdat, Moscow, 55 (1988).