Corresponding States Correlations of Supercritical-Point Parameters and Acentric Factor of Alkali Metals

Current Issue

Volume 7, 2019

Issue 3 (September)

Issue 3 (September)

Authors

Abstract

The Corresponding States Principle (CSP) has a significant role in the estimation of thermophysical properties of fluids. It manifests the existence of a universal relation between the dimensionless parameters of fluids. The original two-parameter CSP can be applied only to spherical molecules. Introduction of a third parameter in the original two-parameter CSP enhances the scope of CSP to include fluids whose fields deviate from spherical symmetry. The central problem in the use of CSP lies in the choice of the physically realistic characteristic parameters of substances. To extend the CSP to molecular fluids, the nonspherical nature of molecules is taken into account through the acentric factor of substances. The CSP may also be augmented with the supercritical-point parameters. In this respect, CSP based correlations between the supercritical-point parameters and the acentric factor are relevant. Alkali metals exhibit considerable uniformity when their thermodynamic properties are expressed in a suitable dimensionless form. Microscopically, it implies that the form of the intermolecular potential is the same. Hence, the CSP based study if alkali metals is significant. This work deals with a CSP based study on the correlations of the supercritical-point parameters and the acentric factor of cesium, rubidium and potassium. These correlations are established through a generalized van der Waals equation of state. This three- parameter equation differs from the known van der Waals equation of state by the modified expression for molecular pressure. Moreover, cesium, rubidium and potassium are found to obey the single-parameter law of corresponding states, with the reduced suprercritical parameters or the acentric factor as the thermodynamic similarity parameter.

Keywords

Acentric Factor, Alkali Metals, Corresponding States Principle, Quasispinodal, Supercritical Parameters

Reference

[1]

J. Shi, M. Khatri, S. J. Xue, G. S. Mittal, Y. Ma and D. Li, Separation and Purification Techn. Vol. 66, pp. 322-328, 2009.

[2]

G. Brunner, Chem. Biomol. Eng. Vol. 1, pp. 321-342, 2010.

[3]

J. Liu, E. L. Regalado, I. Mergelsberg and C. J. Welch, Org. Biomol. Chem. vol. 11, pp. 4925-4929, 2013.

[4]

G. A. Leeke, T. Lu, R. H. Bridson and J. P. K. SevilleThe J. Supercritical Fluids, vol. 91, pp. 7-14, 2014.

[5]

M. k. Hrnic, D. Cor, M. T. Verboten, Z. Knez, Food quality and Safety, 2, 59-67 (2018).

[6]

S. Clercq, A. Mouahid, P. Gerard, E. Badens, The Journal of Supercritical Fluids, 141, 29-38 (2018).

[7]

J. Lang, L. Matejova, Z. Matej, L. Capek, L. Svoboda, The Journal of Supercritical Fluids, 141, 39-48 (2018).

[8]

M. Akizuki, Y. Oshima, The Journal of Supercritical Fluids, 141, 173-181 (2018).

[9]

G. Seong, T. Aida, Y. Nakagawa, T. Nanba, O. Okada, A. Yoko, T. Tomai, S. Takami, T. Adschiri, The Journal of Supercritical Fluids, 147, 302-309 (2019).

[10]

B. Zezere, J. Cordeiro, J. Leite, A. L. Magalhaes, I. Portugal, C. M. Silva, The Journal of Supercritical Fluids, 143, 259-267 (2019).

[11]

D. M. Heyes, L. V. Woodcock, Fluid Phase Equilibria, 536, 301-308 (2013).

[12]

H. Magnier, R. Curtis, L. Woodcock, Natural Science, 6, 797-807 (2014).

[13]

J. L. Finney, L. V. Woodcock, J. Phys: Condens. Mat. 26, 1-19 (2014).

[14]

L. P. Filippov, Prediction of Thermophysical Properties of Liquids and Gases, Energoatomizdat, Moscow, 1988.

[15]

A. J. Queimada J. A. P. Coutinho, I. M. Marrucho and J. L. DaridonInt. J. Thermophys. vol. 27, pp. 1095-1109, 2006.

[16]

J. K. Singh, J. Adhikari and S. K. KwakFluid Phase Equilib. Vol. 248, pp. 1-6, 2006.

[17]

D. X. Liu and H. W. Xiang, Int. J. Thermophys., vol. 24, pp. 1667-1680, 2003.

[18]

H. W. Xiang, J. Phys. Chem. Ref. Data, vol. 33, pp. 1005-1011, 2004.

[19]

A. Mulero, I. Cachadina and M. I. Para, Ind. Eng. Chem. Res. vol 47, pp. 7903-7916, 2008.

[20]

A. J. Queimada, E. H. Stenby, I. M. Marrucho and J. A. P. Coutinho, Fluid Phase Equilib., vol. 212, pp. 303-314, 2003.

[21]

F. Paradela, A. J. Queimada, I. M. Marrucho, C. P. Netto and J. A. P. CoutinhoInt. J. Thermophys., vol. 26, pp. 1461-1475, 2005.

[22]

A. J. Queimada, I. M. Marrucho and J. A. P. CoutinhoFluid Phase Equilib., vol. 183-184, pp. 229- 238, 2001.

[23]

N. A. Darwish and S. A. Al-Muhtaseb, “A comparison between four cubic equations of state in predicting the inversion curve and spinodal curve loci of methane”, Thermochim. Acta, vol. 287, pp. 43-52, 1996.

[24]

A. Leon, M. Parra and J. Grosso, “Estimation of critical properties of typically columbian vacuum residue sara fractions”, CT&F-Ciencia Technologia Futuro, vol. 3, pp. 129-142, 2008.

[25]

E. Ghasemian, R. Zobeydi, Fluid Phase Equilibria, 358, 40-43 (2013).

[26]

S. Tahami, H. Ghasemitabar, K. Movagharnejad, Fluid Phase Equilibria, In Press (2019).

[27]

I. Machin, C. Olivera_Fuentes, J. Computational Methods in Sciences and Engineering, 17, 161-175 (2017).

[28]

W. H. Carande, A. F. Kazakov, C. D. Muzny, M. D. Frenkel, J. Chem Eng. Data, 60, 1377-1387 (2015).

[29]

M. T. Bouazza, L. Baggami, M. Bouledroua, Int. J. Thermophys., 35, 327-335 (2014).

[30]

L. Biolsi, Int. J. Thermophys., 35, 1785-1802 (2014).

[31]

L. Biolsi, M. Biolsi, Int. J. Thermophys, 37, 42 (2016).

[32]

Q. Liu, Int. J. Thermophys., 37, 65 (2016).

[33]

X. Li, S. Li, H. Ren, J. Yang, Y. Tang, Nanomaterials, 7, 184 (2017).

[34]

H. Nikoofard, F. Bakhtiar, Physics and Chemistry of Liquids, ------ (2018).

[35]

V. P. Stepanov, Russian J. Physical Chemistry A, 93, 799-803 (2019).

[36]

T. V. Gordeychuk, M. V. Kazachek, Russian J. Physical Chemistry A, 93, 1000-1003 (2019).

[37]

M. M. Martynyuk,” Generalized van der Waals equation of state for liquids and gases”, Zh. Fiz. Khim., vol. 65, pp. 1716-1717, 1991.

[38]

V. K. Semenchenko, Selected Topics of Theoretical Physics, Prosveshenie Publication, Moscow 1966.

[39]

M. M. Martynyuk and R. Balasubramanian,”Equation of state for fluid alkali metals: binodal”, Int. J. Thermophys., vol. 16, pp. 533-543, 1995.

[40]

R. Balasubramanian, “Acentric factor of alkali metals”, Int. J. Thermophys., vol. 24, pp. 201-206, 2003.

[41]

R. Balasubramanian, “A correlation of maximum attainable superheat and acentric factor of alkali metals”, Thermochim. Acta, vol. 566, pp. 233-237, 2013.

[42]

R. Balasubramanian, “Correlations of characteristic thermodynamic parameters of alkali metals”, Open J. Chem. Eng. Sci., vol. 1, pp. 51-60, 2014.

[43]

R. Balasubramanian, Kowsarbanu A and Ramesh A, Open Sci. J. Modern Phys., vol. 5, No. 2, 24-31, (2018).

[44]

R. Balasubramanian, Ramesh A, and Kowsarbanu A, American J. Chem. Mat. Sci., vol. 5, No. 6, 91-98, (2018).

[45]

R. Balasubramanian, and Sakthivel M, American J. Chem. Mat. Sci., vol. 6, No. 2, 36-43, (2019).

[46]

R. Balasubramanian, and Ruba K, American J. Chem. Mat. Sci., vol. 6, No. 2, 44-51, (2019).

[47]

R. Balasubramanian, and Anupriya S, American J. Chem. Mat. Sci., vol. 6, No. 2, 52-57, (2019).

[48]

R. Balasubramanian, “A study on the supercritical parameters of alkali metals”, Open J. Chem. Eng. Sci., vol. 1, pp. 61-66, 2014.

Open Science Scholarly Journals

Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.

CONTACT US

Office Address:

228 Park Ave., S#45956, New York, NY 10003

Phone: +(001)(347)535 0661

E-mail: openscience.article@gmail.com

228 Park Ave., S#45956, New York, NY 10003

Phone: +(001)(347)535 0661

E-mail: openscience.article@gmail.com

NAVIGATION

Resources

Authors

Librarians

Booksellers

Advertisement

Learn More

Terms and Conditions

Privacy Policy

Authors

Librarians

Booksellers

Advertisement

Learn More

Terms and Conditions

Privacy Policy

Copyright © 2013-, **Open Science Publishers** - All Rights Reserved