Thermodynamic Limit of Superheat of Fluids by a Generalized Berthelot Equation of State
Superheated metastable states are formed when substances are subjected to rapid heating. At a given temperature and pressure, the free energy of a metastable state is greater than that of the stable state. The thermodynamic limit of superheat, the maximum attainable temperature of superheating under zero pressure, is a characteristic thermodynamic property of substances. The knowledge of the thermodynamic limit of superheat is essential in understanding the behavior of substances in the metastable state. The thermodynamic limit of superheat is marked by the spinodal, a characteristic curve on the phase diagram, of substances. Hence, the study of the thermodynamic limit of superheat of substances is scientifically significant. Moreover, the knowledge of the thermodynamic limit of superheat of substances is required in defining the safety procedures in metallurgical melting, nuclear reactors, cryogenic systems and in the transport of liquefied natural gas. Besides, the superheated liquids are employed in the bubble chambers and in the detectors of neutrons, gamma rays and other charged particles. In this work, the thermodynamic limit of superheat of helium, neon, lithium, sodium, carbon dioxide and nitrous oxide is determined using a generalized Berthelot equation of state. This three- parameter equation differs from the known Berthelot equation of state by the modified expression for molecular pressure. For helium, neon, lithium, sodium, carbon dioxide and nitrous oxide, the parameters of the generalized Berthelot equation of state have been determined through the critical –point parameters. It has also been established that the parameters of the thermodynamic limit of superheat can be used as the corresponding-states parameters.
Carbon Dioxide, Corresponding States, Equation of State, Helium, Lithium, Metastable State, Neon, Nitrous Oxide, Sodium, Spinodal, Thermodynamic Limit of Superheat
[1]
M. M. Martynyuk, Thermochim. Acta, 206, 55-60 (1992).
[2]
V. P. Skripov, E. N. Sinitsyn and P. A. Pavlov, Heat Transfer Properties of Liquids in Metastable State, Atomizdat, Moscow (1980).
[3]
V. G. Baidakov, Superheating of Cryogenic Liquids, Russian Academy of Sciences Publication, Ekaterinburg (1995).
[4]
Cho W. J, Kim J, Lee J, Keyes T, Straub J. E, Kim K. S, Phys. Rev. Lett., 112, 157802 (2014).
[5]
V. G. Baidakov, V. E. Vinogradov, P. a. Pavlov, Int. J. Heat Mass Transfer, 111, 624-630 (2017).
[6]
A. R. Imre, K. W. Wojciechovski, G. Gyorke, A. Groniewsky, J. W. Narojczyk, Entropy, 20, 338 (2018).
[7]
V. G. Baidakov, A. M. Kaverin, A. S. Pankov, Phys. of Fluids, 30, 047102 (2018).
[8]
G. E. Norman, I. M. Saitov, R. A. Sartan, Contrib. Plasma Phys., e201800173 (2019).
[9]
P. G. debenedetti, ‘Metastable Liquids: Concepts and Principles’, Princeton University Press, Princeton NJ (1996).
[10]
J. W. Cahn, J. Chem. Phys., 42, 93 (1965).
[11]
P. Bhimalapuram, S. Chakrobarthy, B. Bagchi, Phys. Rev. Lett., 98, 206104 (2007).
[12]
M. T. Bouazza, L. Baggami, M. Bouledroua, Int. J. Thermophys., 35, 327-335 (2014).
[13]
L. Biolsi, Int. J. Thermophys., 35, 1785-1802 (2014).
[14]
L. Biolsi, M. Biolsi, Int. J. Thermophys., 37, 42 (2016).
[15]
Q. Liu, Int. J. Thermophys., 37, 65 (2016).
[16]
X. Li, S. Li, H. Ren, J. Yang, Y. Tang, Nanomaterials, 7, 184 (2017).
[17]
H. Nikoofard, F. Bakhtiar, Physics and Chemistry of Liquids, (2018).
[18]
V. P. Stepanov, Russian J. Physical Chemistry A, 93, 799-803 (2019).
[19]
T. V. Gordeychuk, M. V. Kazachek, Russian J. Physical Chemistry A, 93, 1000-1003 (2019).
[20]
M. M. Martynyuk, R. Balasubramanian, Int. J. Thermophys., 16 (2), 533–543 (1995).
[21]
R. Balasubramanian, High Temp. –High Press, 34, 335 (2002).
[22]
R. Balasubramanian, Int. J. Thermophys., 24, 201-206 (2003).
[23]
R. Balasubramanian, J. Chem., Eng. Jpn., 37, 1415 (2004).
[24]
R. Balasubramanian, Physica B, 381, 128 (2006).
[25]
R. Balasubramanian, Int. J. Thermophys., 27, 1494-1500 (2006).
[26]
R. Balasubramanian, J. Nucl. Mat., 366, 272 (2007).
[27]
R. Balasubramanian, Asia-Pacific J. Chem. Eng., 3, 90 (2008).
[28]
R. Balasubramanian, J. of Molecular Liquids, 151, 130-133 (2010).
[29]
R. Balasubramanian, Thermochim. Acta, 566, 233-237 (2013).
[30]
R. Balasubramanian, Open J. Chem. Eng. Sci., 1, 51-60 (2014).
[31]
R. Balasubramanian, Kowsarbanu A, Ramesh A, OpenSci. J. Modern Phys., vol. 5, No. 2, 24-31, (2018).
[32]
R. Balasubramanian, Ramesh A, Kowsarbanu A, American J. Chem. Mat. Sci, vol. 5, No. 6, 91-98, (2018).
[33]
R. Balasubramanian, and Sakthivel M, American J. Chem. Mat. Sci., vol. 6, No. 2, 36-43, (2019).
[34]
R. Balasubramanian, and Ruba K, American J. Chem. Mat. Sci., vol. 6, No. 2, 44-51, (2019).
[35]
R. Balasubramanian, and Anupriya S, American J. Chem. Mat. Sci., vol. 6, No. 2, 52-57, (2019).
[36]
R. Balasubramanian, Open J. Chem. Eng. Sci., 1, 61-66 (2014).
[37]
R. Balasubramanian, K. Gunavathi, R. Jegan and D. Roobanguru, Open J. Mod. Phys., 1, 34-40 (2014).
[38]
J. J. Hurly, Int. J. Thermophys., 24 (6), 1611-1635 (2003).
[39]
A. G. M. Ferreira, L. Q. Lobo, TheJ. Chemical Thermodynamics, 41 (12), 1394-1399 (2009).
[40]
S. Anwer, J. J. Carroll, “Handbook: covering Temperatures from 20° to -250° and Pressure up to 1000 Bar” 2nd Ed. Wiley (2016).
[41]
Yu. D. Fomin, V. N. Ryzhov, E. N. Tsiok, V. V. Brazhkin, Phys. Review Lett. E 91022111 (2015).
[42]
Liang-Biao Ouyang, The Open Petroleum Eng. Journal, 5, 42-52, (2012).
[43]
P. K. Gautham, R. S. Saroj, A. Mahan, Int. J. Reseach Phys. Chem., 3 (2), 4-7, (2013).
[44]
M. Vlasiuk, R. J. Sadus, “14th European Thermodynamics Conference Budapest, 21-25, (2017).
[45]
A. L. Goncharov, V. V. Melentier, E. B. Postnikov, High Temp., 54 (1), 52-55, (2016).
[46]
J. J. Hurly, M. R. Moldovev, J. Research of the National Institute of Standard and Tech., 105 (5), 667-688 (2000).
[47]
H. J. Maris, D. O. Edwards, J. Low Temp. Phys., 129, 1-2 (2002).
[48]
Sutrisno, S. I. Swahyudi, S. B. Wibowo, Int. J. Eng. Sci. Research. Tech., 7, 111 (2018).
[49]
Y. Huang, Physics Procedia, 67, 582-590 (2015).
[50]
R. C. Reid, J. M. Prausnitz, B. E. Poling, The Properties of Gases and Liquids, McGraw-Hill, Singapore (1988).
[51]
P. Browning, P. E. Potter, in: R. W. Ohse (Ed.), Handbook of Thermodynamic and Transport Properties of Alkali Metals, Blackwell Scientific, Oxford, 349-358 (1985).
[52]
K. Hornung, in: R. W. Ohse (Ed.), Handbook of Thermodynamic and Transport Properties of Alkali Metals, Blackwell Scientific, Oxford, 487-524 (1985).
[53]
F. Hensel, H. Uchtmann, Annu. Rev. Phys. Chem. 40, 61-83 (1989).
[54]
R. W. Ohse, J. F. Babelot, J. Magill, M. Tatenbaum, in: R. W. Ohse (Ed.), Handbook of Thermodynamic and Transport Properties of Alkali Metals, Blackwell Scientific, Oxford, 329-347 (1985).
[55]
D. R. Schreiber, K. S. Pitzer, Fluid Phase Equilib. 46, 113-130 (1989).
[56]
L. P. Filippov, Predictionof Thermophysical Properties of Liquids and Gases, Energoatomizdat, Moscow (1988).
[57]
V. K. Semenchenko, ‘Selected Topics of Theoretical Physics’, Prosveshenie Publication, Moscow (1966).
[58]
C. L. Yaws, Thermophysical Properties of Chemicals and Hydrocarbons, Gulf Publishing Group (2014).