Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
Correlation of Acentric Factor and Critical Compressibility of Alkali Metals
Current Issue
Volume 7, 2019
Issue 3 (September)
Pages: 55-59   |   Vol. 7, No. 3, September 2019   |   Follow on         
Paper in PDF Downloads: 14   Since Oct. 23, 2019 Views: 836   Since Oct. 23, 2019
Authors
[1]
Balasubramanian Ramasamy, Department of Physics, Arignar Anna Government Arts College, Namakkal, India.
Abstract
The Corresponding States Principle (CSP) manifests the existence of a universal relation between the dimensionless parameters of fluids. The original two-parameter CSP can be applied only to spherical molecules. Introduction of a third parameter in the original two-parameter CSP enhances the scope of CSP to include fluids whose fields deviate from spherical symmetry. The central problem in the use of CSP lies in the choice of the physically realistic characteristic parameters of substances. To extend the CSP to molecular fluids, the nonspherical nature of molecules is taken into account through the acentric factor of substances. The CSP may also be augmented with the critical compressibility of substances. In this respect, CSP based correlations between the critical compressibility and the acentric factor are relevant. Alkali metals exhibit considerable uniformity when their thermodynamic properties are expressed in a suitable dimensionless form. Microscopically, it implies that the form of the intermolecular potential is the same. Hence, the CSP based study if alkali metals is significant. This work deals with a CSP based study on the correlations of the critical compressibility and the acentric factor of cesium, rubidium and potassium. These correlations are established through a generalized van der Waals equation of state. This three- parameter equation differs from the known van der Waals equation of state by the modified expression for molecular pressure. It has been established that the critical compressibility factor has a parabolic dependence on the acentric factor of alkali metals. Moreover, cesium, rubidium and potassium are found to obey the single-parameter law of corresponding states, with the critical compressibility or the acentric factor as the thermodynamic similarity parameter.
Keywords
Acentric Factor, Alkali Metals, Corresponding States Principle, Critical Compressibility Factor, Molecular Pressure, Fluid Phase Equilibrium
Reference
[1]
W. C. Pilgrim, S. Hosokawa, C. Morkel, Contrib. Plasma Phys. 41 (2001) 283-286.
[2]
A. A. Likal’ter, H. Hess, H. Schneidenbach, Physica Scripta 66 (2002) 89-93.
[3]
F. Hensel, W. C. Pilgrim, Contrib. Plasma Phys. 43 (2003) 306-310.
[4]
L. Maftoon-Azad, A. Boushehri, Int. J. Thermophys. 25 (2004) 893-899.
[5]
V. Rogankov, T. Bedrova, VysnykLviv Univ. Ser. Physica, 38 (2005) 197-202.
[6]
E. K. Goharshadi, A. R. Berenji, J. Nucl. Mat. 348 (2006) 40-44.
[7]
O. M. Krasilnikov, Fizika Metalovi Metalovedenie 103 (2007) 306-310.
[8]
L. A. Blagonravov, Teplofiz. Vys. Temp. 46 (2008) 680-684.
[9]
J. Amoros, S. Ravi, Physics and Chemistry of Liquids 49 (2011) 9-20.
[10]
M. Moosavi, S. Sabzevari, J. Mol. Liq. 174 (2012) 117-123.
[11]
N. Mehdipour, Fluid Phase Equilib. 355 (2013) 8-11.
[12]
T. Bouazza, L. Baggami, M. Bouledroua, Int. J. Thermophys, 35, 327-335 (2014).
[13]
L. Biolsi, Int. J. Thermophys, 35, 1785-1802 (2014).
[14]
L. Biolsi, M. Biolsi, Int. J. Thermophys, 37, 42 (2016).
[15]
Q. Liu, Int. J. Thermophys, 37, 65 (2016).
[16]
X. Li, S. Li, H. Ren, J. Yang, Y. Tang, Nanomaterials, 7, 184 (2017)/
[17]
H. Nikoofard, F. Bakhtiar, Physics and Chemistry of Liquids, (2018)/
[18]
V. P. Stepanov, RussianJ. Physical Chemistry A, 93, 799-803 (2019).
[19]
T. V. Gordeychuk, M. V. Kazachek, Russian J. Physical Chemistry A, 93, 1000-1003 (2019).
[20]
L. P. Filippov, Prediction of Thermophysical Properties of Liquids and Gases, Energoatomizdat, Moscow, 1988.
[21]
A. J. Queimada, J. A. P. Coutinho, I. M. Marrucho, J. L. Daridon, Int. J. Thermophys. 27 (2006) 1095-1109.
[22]
J. K. Singh, J. Adhikari, S. K. Kwak, Fluid Phase Equilib. 248 (2006) 1-6.
[23]
D. X. Liu, H. W. Xiang, Int. J. Thermophys. 24 (2003) 1667-1680.
[24]
H. W. Xiang, J. Phys. Chem. Ref. Data 33 (2004) 1005-1011.
[25]
A. Mulero, I. Cachadina, M. I. Para, Ind. Eng. Chem. Res. 47 (2008) 7903-7916.
[26]
A. J. Queimada, E. H. Stenby, I. M. Marrucho, J. A. P. Coutinho, Fluid Phase Equilib. 212 (2003) 303-314.
[27]
F. Paradela, A. J. Queimada, I. M. Marrucho, C. P. Netto, J. A. P. Coutinho, Int. J. Thermophys. 26 (2005) 1461-1475.
[28]
A. J. Queimada, I. M. Marrucho, J. A. P. Coutinho, Fluid Phase Equilib, 183-184 (2001) 229- 238.
[29]
N. A. Darwish, S. A. Al-Muhtaseb, Thermochim. Acta 287 (1996) 43-52.
[30]
J. Shi, M. Khatri, S. J. Xue, G. S. Mittal, Y. Ma, D. Li, Separation and Purification Technology 66 (2009) 322-328.
[31]
A. Leon, M. Parra, J. Grosso, CT&F-Ciencia Technologia Futuro 3 (2008) 129-142.
[32]
J. O. Valderrama, L. A. Cisternas, Fluid Phase Equilib. 29 (1986) 431-438.
[33]
H. Tang, Int. Chem. Eng. 27 (1987) 148-157.
[34]
M. M. Martynyuk, Zh. Fiz. Khim. 65 (1991) 1716-1717.
[35]
M. M. Martynyuk, R. Balasubramanian, Int. J. Thermophys, 16 (2) (1995) 533–543.
[36]
R. Balasubramanian, High Temp. –High Press, 34 (2002) 335.
[37]
R. Balasubramanian, Int. J. Thermophys. 24 (2003) 201-206.
[38]
R. Balasubramanian, J. Chem, Eng. Jpn, 37 (2004) 1415.
[39]
R. Balasubramanian, Physica B, 381 (2006) 128.
[40]
R. Balasubramanian, Int. J. Thermophys, 27 (2006) 1494-1500.
[41]
R. Balasubramanian, J. Nucl. Mat, 366 (2007) 272.
[42]
R. Balasubramanian, Asia-Pacific J. Chem. Eng, 3 (2008) 90.
[43]
R. Balasubramanian, J. of Molecular Liquids, 151 (2010) 130-133.
[44]
R. Balasubramanian, Thermochimica Acta, 566 (2013) 233-237.
[45]
R. Balasubramanian, Open J. Chem. Eng. Sci, 1 (2014) 61-66.
[46]
R. Balasubramanian, Kowsarbanu A, Ramesh A, Open Sci. J. Modern Phys. 5 (2) (2018) 24-31.
[47]
R. Balasubramanian, Ramesh A, Kowsarbanu A, American J. Chem. Mat. Sci, 5 (6) (2018) 91-98.
[48]
R. Balasubramanian, and Sakthivel M, AmericanJ. Chem. Mat. Sci. 6 (2) (2019) 36-43.
[49]
R. Balasubramanian, and Ruba K, AmericanJ. Chem. Mat. Sci. 6 (2) (2019) 44-51.
[50]
R. Balasubramanian, and Anupriya S, AmericanJ. Chem. Mat. Sci. 6 (2) (2019) 52-57.
[51]
R. C. Reid, J. M. Prausnitz, B. E. Poling, The Properties of Gases and Liquids, McGraw-Hill, Singapore (1988).
[52]
P. Browning, P. E. Potter, in: R. W. Ohse (Ed.), Handbook of Thermodynamic and Transport Properties of Alkali.
[53]
Metals, Blackwell Scientific, Oxford (1985) 349-358.
[54]
K. Hornung, in: R. W. Ohse (Ed.), Handbook of Thermodynamic and Transport Properties of Alkali Metals.
[55]
Blackwell Scientific, Oxford (1985) 487-524.
[56]
F. Hensel, H. Uchtmann, Annu. Rev. Phys. Chem. 40 (1989) 61-83.
[57]
R. W. Ohse, J. F. Babelot, J. Magill, M. Taten baum, in: R. W. Ohse (Ed.), Handbook of Thermodynamic and.
[58]
Transport Properties of Alkali Metals, Blackwell Scientific, Oxford (1985) 329-347.
[59]
D. R. Schreiber, K. S. Pitzer, Fluid Phase Equilib. 46 (1989) 113-130.
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
CONTACT US
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
E-mail:
LET'S GET IN TOUCH
Name
E-mail
Subject
Message
SEND MASSAGE
Copyright © 2013-, Open Science Publishers - All Rights Reserved