Curie Points and Direct Current Electrical Conductivity for Inverse Li-Spinel Ferrite Replaced by Zn2+ Ion
[1]
Hussein Dawoud, Department of Physics, Faculty of Science, Islamic University, Gaza, Palestine.
[2]
Zana Abu Mosa, Department of Physics, Faculty of Science, Islamic University, Gaza, Palestine.
[3]
Samy Shaat, Department of Physics, Faculty of Science, Islamic University, Gaza, Palestine.
The conventional ceramic double sintering method was used to prepare a series of mixed Li-Zn spinel ferrites (SFs) Direct electric (DC) electrical conductivity (σ) and inductance (L) were studied for the prepared series of samples from room temperature to well beyond the Curie point (TC). σ was measured as a function of temperature, the relation between lnσ with 1/T indicated that σ was increased with increasing of the temperature, which proves that the prepared samples have a semiconductor behavior. The maximum value of the σ was reported for the sample of x = 0.8. The σ results were interpreted in terms of hopping model. The relation between lnσT and 1/T showed a change in the slope which is attributed to the change of samples from ferrimagnetic to paramagnetic at TC. The values of L increased exponentially from room temperature up to TC, and then they decreased sharply. The calculated activation energy Ea in the ferromagnetic region was less than that in paramagnetic region. The calculated activation energy (Ea) decreased with increasing of Zn content. The values of the TC for the prepared samples were determined from σ and L measurements, which decreased with increasing of Zn content.
Spinel Ferrite, DC Electric Conductivity, Curie Point, Inductance, Activation Energy, Defect, Vacancies
[1]
S. S. Khot, N. S. Shinde, B. Ladgaonkar, B. B. Kale and S. C. Watawe, IJAET 1 (4), 422 (2011).
[2]
B. Suryanarayana, K. C. Mouli, V. Raghavendra and B. B. Parvateesam, IJRPB 1, 92 (2014).
[3]
K. M. Batoo and M. S. Ansari, NANOSCALE RES LETT 7 (112), 2 (2012).
[4]
D. Carta, M. F. Casula, A. Falqui, D. Loche, G. Mountjoy, C. Sangregorio, and A. Corrias, J. Phys. Chem. C 113, 8606 (2009).
[5]
S. Singh, M. Singh, N. K. Ralhan, R. K. Kotnala, and K. C. Verma, Adv. Mat. Lett. 3 (6), 504 (2012).
[6]
A. Mahmud, S. Islam and S. S. Nahar, IJAMSE, 5 (1), 1 (2016).
[7]
Md. Shahjahan, N. A. Ahmed, S. N. Rahman, S. Islam, and N. Khatun, IJETCAS 13 (104), 20 (2014).
[8]
T. Yang, R. N. C. Brown, L. C. Kempel, and P. Kofinas, J Nanopart Res 12, 2967 (2010).
[9]
N. Yahya, A. S. M. N. Aripin, A. A. Aziz, H. Daud, H. M. Zaid, L. K. Pah and N. Maarof, Am. J. Engg. & Applied Sci. 1 (1), 53 (2008).
[10]
V. K. Vagolu, K. Samatha, K. C. Mouli, J. N. Kiran and P. D. Sanasi, Int J Pharm Bio Sci 5 (3), 159 (2014).
[11]
B. P. Rao, A. M. Kumar, K. H. Rao, Y. L. N. Murthy, O. F. Caltun, I. Dumitru, and L. Spinu J. Optoelectron. Adv. M. 8 (5), 1703 (2006).
[12]
E. Bermejo, T. Mercier, and M Quarton J. Am. Ceram. Sac., 78 (21), 365 (1995).
[13]
H. Dawoud, L. Abu-Ouda, S. K. K. Shaat, AJMSA 4 (2), 11 (2016).
[14]
H. Dawoud, IUG Journal of Natural Science 25 (2), 267 (2017).
[15]
H. Dawoud, L. Abu-Ouda, and S. K. K. Shaat, IUG Journal of Natural Science 25 (2), 274 (2017).
[16]
H. Dawoud, L. Abu-Ouda, and S. K. K. Shaat, IJRASET 4 (XII), 111 (2016).
[17]
H. Dawoud, L. Abu-Ouda, and S. K. K. Shaat, Chem. Sci. Trans. 6 (2), 179 (2017).
[18]
M. Klinger, J Phys Stat Sol., 79b, 9 (1977).
[19]
K. V. Kumar, and D. Ravinder, Int. J. Inorg. Mater. 3 (7), 661 (2001).
[20]
P. V. B. Reddy, B. Ramesh, and Ch. G. Reddy, Physica B 405, 1852 (2010).
[21]
M. A. Ahmed, K. A. Darwish, E. H. El-Khawas Journal of materials science letters 16, 1948 (1997).
[22]
K. R. Krishna, K. V. Kumar, and D. Ravinder, AMPC 2, 185 (2012).
[23]
D. Ravinder, and A. V. R. Reddy, Mat. Lett. 38, 265 (1999).
[24]
K. V. Kumar, R. Sridhar, D. Ravinder, and K. R. Krishna,. J. of Applied Physics and Mathematics 4 (2), 113-117 (2014).
[25]
K. R. Krishna, K. V. Kumar, and D. Ravinder, Adv. Mater. Phys. Chem. 2, 185 (2012).
[26]
R. R. Heikes and W. D. Johnston, J. Chem. and Phys. 26, 582 (1975).
[27]
M. E. Shabasgy, J. Magn. Magn. 172, 188 (1997).
[28]
H. A. Dawoud, “A study of Some Electric and Magnetic Properties of Li-Cu Spinel”, Pd.D. Thesis, Faculty of Science Zagazig University, (1997).
[29]
A. V. Raut, P. P. Khirade, A. Humbe, S. A. Jadhav, and D. R. Shengule,. J Supercond Nov Magn. 29 (5), 1331 (2016).
[30]
C. Ederer and N. A. Spaldin Phys. Rev. B 71, 224103 (2005).
[31]
A. A. Sattar, Egypt. J. Sol. 26 (2), 133 (2003).
[32]
M. V. K. Mehar, A. Simhadri, N. L. V. R. K Prasad, K. Samatha IJRASET 3 (IV), 1050 (2015).
[33]
P. Vijaya Bhasker Reddy b, B. Ramesh b, Ch. Gopal Reddy, Physica B 405. 1852 (2010).
[34]
http://shodhganga.inflibnet.ac.in/bitstream/10603/69054/10/10_chapter%203.pdf accessed on 24/01/2018.
[35]
R. Raman and V. FL K. Murthy, B. Viswanathan. Appl. Phys. 69 (7), 4053J (1991).
[36]
H. A. Dawoud and S. K. K. Shaat, IUG Journal of Natural Science, 114, 165 (2006).
[37]
M. A. Gillfo. Phys. Rev. 109, 777 (1958).
[38]
T. J. Shinde, A. B. Gadkari, and P. N. Vasambekar, J. Magn. Magn. Mater. 333, 152 (2013).
[39]
V. J. Pissurlekar, IJSR 4 (12), 453 (2015).