Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
Deformation Behavior of Heat-Treated Ni-Rich NiTi Shape Memory Alloy
Current Issue
Volume 6, 2018
Issue 2 (June)
Pages: 7-21   |   Vol. 6, No. 2, June 2018   |   Follow on         
Paper in PDF Downloads: 83   Since Jul. 25, 2018 Views: 1597   Since Jul. 25, 2018
Authors
[1]
Ghazal Tadayyon, School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland.
[2]
Yina Guo, Bernal Institute, University of Limerick, Limerick, Ireland.
[3]
Manus Jonathan Paul Biggs, Centre for Research in Medical Devices (CURAM), National University of Ireland, Galway, Ireland.
[4]
Syed Ansar Mohammad Tofail, Bernal Institute, University of Limerick, Limerick, Ireland; Department of Physics, University of Limerick, Limerick, Ireland.
Abstract
While much is known about the shape memory and supereleasticity of equiatomic alloy of Ni and Ti (NiTiNoL), the deformation behavior of Ni-rich NiTi has attracted relatively some attention. The increase in nickel content, however, also hardens the alloy, which can make the alloy difficult to process. A slightly Ni-rich composition of NiTi can be, on the other hand, advantageous in applications where a higher stiffness of NiTi coupled with its shape memory and superelasticity is required e.g. in orthodontic wires, cardiovascular stent or pressure valves. In this study, we investigate the influence of heat treatment on the deformation behavior of superelastic nickel–titanium for biomedical applications. For this, NiTi alloy composed of 56 wt.% (51 at.%) nickel has been investigated after heat treatment within the thermal window of between 400 and 800°C. Heat treatment significantly influenced both the plasticity and the transformation behavior of Ni-rich NiTi. A detailed examination of the microstructural evolution, calorimetric response and tensile test response with respect to the superelasticity allowed us to establish protocols for obtaining nearly ideal superelastic properties in Ni-rich NiTi shape memory alloys. Our findings can enable use of these alloys in e.g. medical devices that require higher stiffness and a larger surface area.
Keywords
Ni-Rich NiTi, Shape Memory Alloy, Heat Treatment, Superelasticity
Reference
[1]
Otsuka, K. and Ren, X., "Physical metallurgy of Ti–Ni-based shape memory alloys ", Progress in Materials Science, 2005. 50 (5): p. 511-678.
[2]
Miyazaki S., Ohmi Y., Otsuka K., Suzuki Y., "Characteristics of deformation and transformation pseudoelasticity in Ti-Ni alloys", Journal de Physique Colloques, 1982. 43 (C4): p. 255-260.
[3]
Saburi T., Tatsumi T., Nenno S., ''Effect of heat treatment on mechanical behavior of Ti-Ni alloys'', Journal de Physique Colloques, 1982. 43 (C4): p. 261-266.
[4]
O’Brien B., Weafer F. M., and Bruzzi M. S., "Shape Memory Alloys for Use in Medicine", Comprehensive Biomaterials, 2011. 1, p. 49-72.
[5]
Favier D., Liu Y., Orgeas L., Sandel A., Debove L., Comte-Gaz P. ''Influence of thermomechanical processing on the superelastic properties of a Ni-rich Nitinol shape memory alloy''. Materials Science and Engineering: A, 2006. 429 (1): p. 130-136.
[6]
Briceno, J., Romeu A., Espinar E., Llamas J. M, Gil F. J., ''Influence of the microstructure on electrochemical corrosion and nickel release in NiTi orthodontic archwires''. Materials Science and Engineering C, 2013. 33 (8): p. 4989-93.
[7]
Yeung, K. W. K., Cheung K. M. C., Lu W. W., Chung C. Y., ''Optimization of thermal treatment parameters to alter austenitic phase transition temperature of NiTi alloy for medical implant''. Materials Science and Engineering: A, 2004. 383 (2): p. 213-218.
[8]
Russell, S. M., Design Considerations for Nitinol Bone Staples. Journal of Materials Engineering and Performance, 2009. 18 (5): p. 831-835.
[9]
Wen, C. E., Xiong J. Y., Li Y. C. and Hodgson P. D., ''Porous shape memory alloy scaffolds for biomedical applications: a review''. Physica Scripta, 2010. T139: p. 014070.
[10]
Petrini, L. and Migliavacca F., ''Biomedical Applications of Shape Memory Alloys''. Journal of Metallurgy, 2011. 2011.
[11]
Sun, L., Huang W. M., Ding Z., Zhao Y, Wang C. C., Purnawali H., Tang C., ''Stimulus-responsive shape memory materials: A review''. Materials & Design, 2012. 33 (Supplement C): p. 577-640.
[12]
Greiner, C., Oppenheimer S. M., and Dunand D. C., ''High strength, low stiffness, porous NiTi with superelastic properties''. Acta Biomaterialia, 2005. 1 (6): p. 705-716.
[13]
Kuribayashi, K., Tsuchiya K., You Z., Tomus D., Umemoto M., Ito T., Sasaki M., ''Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil''. Materials Science and Engineering: A, 2006. 419 (1): p. 131-137.
[14]
Benafan, O., Noebe R. D., Padula S. A., Garg A., Clausen B., Vogel S., Vaidyanathan R., ''Temperature dependent deformation of the B2 austenite phase of a NiTi shape memory alloy''. International Journal of Plasticity, 2013. 51 (Supplement C): p. 103-121.
[15]
Bhattacharya K., Microstructure of Martensite: Why it Forms and How it Gives Rise to the Shape-Memory Effect, Oxford University Press, pp. 1–208. 2004.
[16]
Tuissi, A., Carr S., Butler J., Gandhi A. A., O’Donoghue L., McNamara K., Carlson J. M., Lavelle S., Tiernan P., Biffi C. A., Bassani P., Tofail S. A. M., ''Radiopaque Shape Memory Alloys: NiTi–Er with Stable Superelasticity''. Shape Memory and Superelasticity, 2016. 2 (2): p. 196-203.
[17]
Soejima, Y., Motomura S., Mitsuhara M., Inamura T., Nishida M., ''In situ scanning electron microscopy study of the thermoelastic martensitic transformation in Ti–Ni shape memory alloy''. Acta Materialia, 2016. 103: p. 352-360.
[18]
Khaleghi, F., et al., ''Effect of short-time annealing treatment on the superelastic behavior of cold drawn Ni-rich NiTi shape memory wires''. Journal of Alloys and Compounds, 2013. 554 (Supplement C): p. 32-38.
[19]
Laplanche G., Birk T., Schneider S., Frenzel J., Eggeler G., ''Effect of temperature and texture on the reorientation of martensite variants in NiTi shape memory alloys''. Acta Materialia, 2017. 127 (Supplement C): p. 143-152.
[20]
Gallardo Fuentes J. M., G. P., Strittmatter J., ''Phase Change Behavior of Nitinol Shape Memory Alloys''. Advanced Engineering Materials, 2002. 4 (7): p. 437–452.
[21]
Sadiq, H., Wong M. B., Al-Mahaidi R. and Zhao X. L., ''The effects of heat treatment on the recovery stresses of shape memory alloys''. Smart Materials and Structures, 2010. 19 (3): p. 035021.
[22]
Raabe, D., Recovery and Recrystallization: Phenomena, Physics, Models, Simulation in Laughlin, David E, in Physical Metallurgy (Fifth Edition), K. Hono, Editor. 2014, Elsevier: Oxford. p. 2291-2397.
[23]
Tong, Y. X., Chen F., Guo B., Tian B., Li L., Zheng Y. F., Gunderov D. V., Valiev R. Z., ''Superelasticity and its stability of an ultrafine-grained Ti49.2Ni50.8 shape memory alloy processed by equal channel angular pressing''. Materials Science and Engineering: A, 2013. 587 (Supplement C): p. 61-64.
[24]
Tang, W., Sandstrom R., Wei Z. G. and Miyazaki, S., ''Experimental investigation and thermodynamic calculation of the Ti-Ni-Cu shape memory alloys''. Metallurgical and Materials Transactions A, 2000. A 31: p. 2423-2430.
[25]
ASTM E8/E8M standard test methods for tension testing of metallic materials. American Society for Testing and Materials, 2013.
[26]
ASTM - E9 Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature, ASTM International, West Conshohocken, PA.
[27]
Fan, Q. C., Zhang Y. H., Wang Y. Y., Sun M. Y., Meng Y. T., Huang S. K., Wen Y. H., ''Influences of transformation behavior and precipitates on the deformation behavior of Ni-rich NiTi alloys''. Materials Science and Engineering: A, 2017. 700 (Supplement C): p. 269-280.
[28]
Khalil-Allafi, J., Dlouhy A., and Eggeler G., ''Ni4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations''. Acta Materialia, 2002. 50 (17): p. 4255-4274.
[29]
Maletta, C., Filice L., and Furgiuele F., ''NiTi Belleville washers: Design, manufacturing and testing''. Journal of Intelligent Material Systems and Structures, 2013. 24 (6): p. 695-703.
[30]
Eaton-Evans, J., Dulieu-Barton J. M., Little E. G. and Brown I. A., ''Observations during mechanical testing of Nitinol''. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2008. 222 (2): p. 97-105.
[31]
Gall K., Sehitoglu H., Chumlyakov Y. I., Kireeva I. V., Maier H. J., ''The influence of aging on critical transformation stress levels and martensite start temperatures in NiTi: Part II - Discussion of experimental results'', Journal of Engineering Materials and Technology, Transactions of the ASME, 1999 121 (1): p. 28-37.
[32]
Nurveren, K., Akdoğan A., and Huang W. M., ''Evolution of transformation characteristics with heating/cooling rate in NiTi shape memory alloys''. Journal of Materials Processing Technology, 2008. 196 (1): p. 129-134.
[33]
Tadayyon G., Mazinani, M., Guo Y., Zebarjad S. M., Tofail S. A. M. and Biggs, M. J., ''The effect of annealing on the mechanical properties and microstructural evolution of Ti-rich NiTi shape memory alloy''. Materials Science and Engineering: A, 2016. 662 (Supplement C): p. 564-577.
[34]
Duerig, T. W. and Bhattacharya K., ''The Influence of the R-Phase on the Superelastic Behavior of NiTi''. Shape Memory and Superelasticity, 2015. 1 (2): p. 153-161.
[35]
Faiella, G. and Antonucci V., Chapter 3 - Experimental Characterization of Shape Memory Alloys A2 - Lecce, Leonardo, in Shape Memory Alloy Engineering, A. Concilio, Editor. 2015, Butterworth-Heinemann: Boston. p. 57-77.
[36]
Saedi, S., Turabi A. S., Taheri Andani M., Haberland C., Karaca H. and Elahinia M., ''The influence of heat treatment on the thermomechanical response of Ni-rich NiTi alloys manufactured by selective laser melting''. Journal of Alloys and Compounds, 2016. 677 (Supplement C): p. 204-210.
[37]
Safdel, A., et al., ''Room temperature superelastic responses of NiTi alloy treated by two distinct thermomechanical processing schemes''. Materials Science and Engineering: A, 2017. 684 (Supplement C): p. 303-311.
[38]
Gall K., Sehitoglu H., Chumlyakov Y. I., Kireeva I. V., ''Tension–compression asymmetry of the stress–strain response in aged single crystal and polycrystalline NiTi''. Acta Materialia, 1999. 47 (4): p. 1203-1217.
[39]
Raj S. V. and Noebe R. D., ''Low temperature creep of hot-extruded near-stoichiometric NiTi shape memory alloy part I: Isothermal creep''. Materials Science and Engineering: A, 2013. 581 (Supplement C): p. 145-153.
[40]
Raj S. V. and R. D. Noebe, ''Low temperature creep of hot-extruded near-stoichiometric NiTi shape memory alloy part II: Effect of thermal cycling''. Materials Science and Engineering: A, 2013. 581 (Supplement C): p. 154-163.
[41]
Karaca, H. E., Karaca H. E., Saghaian S. M., Ded G., Tobe H., Basaran B., Maier H. J., Noebe R. D., Chumlyakov Y., ''Effects of nanoprecipitation on the shape memory and material properties of a Ni-rich NiTiHf high temperature shape memory alloy''. Acta Materialia, 2013. 61 (19): p. 7422-7431.
[42]
Meng X. L., Cai W., Chen F., Zhao L. C., ''Effect of aging on martensitic transformation and microstructure in Ni-rich TiNiHf shape memory alloy''. Scripta Materialia, 2006. 54 (9): p. 1599-1604.
[43]
Miyazaki S., and Otsuka K., ''Development of Shape Memory Alloys''. Isij International, 1989. 29 (5): p. 353-377.
[44]
Iijima M., Ohno H., Kawashima I., Endo K., Mizoguchi I., ''Mechanical behavior at different temperatures and stresses for superelastic nickel–titanium orthodontic wires having different transformation temperatures''. Dental Materials, 2002. 18 (1): p. 88-93.
[45]
Saedi S., Turabi A. S., Taheri Andani M., Shayesteh Moghaddam, N., Elahinia M., Karaca H. E., ''Texture, aging, and superelasticity of selective laser melting fabricated Ni-rich NiTi alloys''. Materials Science and Engineering: A, 2017. 686 (Supplement C): p. 1-10.
[46]
Zhao Y., Minoru T., Kang Y., Kawasaki A., ''Compression behavior of porous NiTi shape memory alloy''. Acta Materialia, 2005. 53 (2): p. 337-343.
[47]
Orgéas L., Favier, D., ''Non symmetric tension compression behavior of NiTi alloy''. Journal de Physique IV, 1995. C8: p. 593-598.
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
CONTACT US
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
E-mail:
LET'S GET IN TOUCH
Name
E-mail
Subject
Message
SEND MASSAGE
Copyright © 2013-, Open Science Publishers - All Rights Reserved