Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
Investigation of the Effect of Zn Ions Concentration on DC Conductivity and Curie Temperature of Ni-spinel Ferrite
Current Issue
Volume 4, 2016
Issue 2 (December)
Pages: 11-17   |   Vol. 4, No. 2, December 2016   |   Follow on         
Paper in PDF Downloads: 43   Since Dec. 6, 2016 Views: 1758   Since Dec. 6, 2016
Authors
[1]
Hussein Dawoud, Department of Physics, Islamic University, Gaza, Palestine.
[2]
Lubna Abu Ouda, Department of Physics, Islamic University, Gaza, Palestine.
[3]
Samy Shaat, Department of Physics, Islamic University, Gaza, Palestine.
Abstract
The mixed polycrystalline ferrites Ni1-sZnsFe2O4, were obtained using the standard double sintering technique by mixing high purity of metal oxides NiO, ZnO and Fe2O3 for different concentration of Zn ion. DC electric properties and inductance of the prepared samples were carried out over the temperature range of 300 up to 773 K using two probe method and LCR meter. The thermal dependence of DC electrical conductivity (σDC) for the mixed Ni-Zn spinel ferrites with different Zn concentrations was investigated. In general, σDC found to be increased with both increasing temperature and Zn content. The thermal measurement of σDC confirmed the semiconductor behavior for Zn substituted Ni spinel ferrites and follows Arrhenius relation in the investigated temperature region. The variation of σDC indicated that the conduction mechanism was correlated to a small polaron-hopping. The activation energies of both regions, ferrimagnetic (Ef) and paramagnetic (Ep) and △E=Ep-Ef for all studied compositions were estimated. The calculated activation energy in the ferrimagnetic region was found to be less than that in paramagnetic region. The influenced of increased Zn ions on σDC and activation energies was investigated. From these results, it is found that △E and σDC decrease with increasing of Zn content. The inductance measurements for the prepared samples show constant values at low temperature range up to Curie temperature (TC), then the inductance decrease sharply except for ZnFe2O4 which confirmed that it is a paramagnetic at room temperature. The Curie temperature was determined from σDC and inductance measurement, which was found to be nearly the same and they decreased with increasing of Zn ions. The experimental results reveal that the electric properties and inductance, which can be dramatically changed by substitution of the non-magnetic Zn ions in Ni spinel ferrite. These improved properties of the mixed Ni-Zn spinel ferrite suggest uses as a soft ferrite material, which is proved an interest material for technological and scientific applications.
Keywords
Spinel Ferrite, DC Electric, Curie Temperature, Inductance, Activation Energy
Reference
[1]
S. S. Khot, N. S. Shinde, B. Ladgaonkar, B. B. Kale and S. C. Watawe, IJAET, 2011, 1(4) 422-429.
[2]
B. Suryanarayana, K. C. Mouli, V. Raghavendra and B. B. Parvateesam, IJRPB, 2014,1, 92-94.
[3]
K. M. Batoo and M. S. Ansari, Nanoscale Res. Lett., 7(112) (2012) 2-14.
[4]
D. Carta, M. F. Casula, A. Falqui, D. Loche, G. Mountjoy, C. Sangregorio and A. Corrias, J. Phys. Chem. C, 2009, 113, 8606–8615.
[5]
S. Singh, M. Singh, N. K. Ralhan, R. K. Kotnala, K. C. Verma, Adv. Mat. Lett., 2012, 3(6), 504-506.
[6]
A. Mahmud, S. Islam and S. S. Nahar, IJAMSE, 5(1) (2016) 1-10.
[7]
M. Shahjahan, N. A. Ahmed, S. N. Rahman1, S. Islam1 and N. Khatun, IJETCAS, 2014, 13(104), 20-25.
[8]
T. Yang, R. N. C. Brown, L. C. Kempel and P. Kofinas, J Nanopart Res, 2010, 12, 2967–2978.
[9]
N. Yahya, A. S. M. N. Aripin, A. A. Aziz, H. Daud, H. M. Zaid, L. K. Pah and N. Maarof, AJEAS, 2008, 1(1), 53-56.
[10]
V. K. Vagolu, K. Samatha, K. C. Mouli, J. N. Kiran and P. D. Sanasi, Int J Pharm Bio Sci., 2014, 5(3), 159–175.
[11]
B. P. RAO, A. M. Kumar, K. H. Rao, Y. L. N. Murthy, O. F. Caltun, I. Dumitru and L. Spinu, J OPTOELECTRON ADV M, 2006, 8(5), 1703-1705.
[12]
K. Vijaya Kumar, Rapolu Sridhar, D. Ravinder and K. Rama Krishna, IJAPM, 2014, 4(2), 113-117.
[13]
S. K. K. Shaat, H. C. Swart and O. M. Ntwaebborwa1 SA Institute of Physics, 2013, ISBN: 978-0-620-62819-8.
[14]
S. K. K. Shaat, H. C. Swart and O. M. Ntwaeaborwa, J. Alloys Compd., 2014, 587, 600–605.
[15]
S. K. K. Shaat, H. C. Swart and O. M. Ntwaeaborwa, J. Electron. Spectrosc. Relat. Phenom., 2014, 197, 72–79.
[16]
S. W. Lee and C. S. Kin, J. Magn. Magn. Mater., 304(1) (2006) e418-e420.
[17]
E. F. Westrum, J. R. and D. M. Grimes, J. Phys. Chem. Solids, 1957, 3, 44-49.
[18]
K. R. Krishna, K. V. Kumar and D. Ravinder, AMPC, 2012, 2, 185-191.
[19]
D. Ravinder and A. V. R. Reddy, Mat. Lett., 1999, 38, 265-269.
[20]
A. L. Eatah, A. A. Ghani, M. F. El-Shahat and E. El Faramawy, Phys. State Sol. A, 1987, 104, 793-797.
[21]
A. T. Eatah, A. A. Ghani and E. E. Earanaway, Phys. State Sol. (a), 1988, 105, 231-233.
[22]
S. H. Patil, S. I. Patil, S. M. Kadam and B. K. Chougule, Czech J Phys., 42 (1992) 939-945.
[23]
M. I. Rlinger and A. A. Samokhvalov, Phys. Status Solidi (b), 1977, 79(1), 9-48.
[24]
K. V. Kumar, D. Ravinder, Int J Inorg Mater, 2001, 3(7), 661-666.
[25]
L. I. Rabinkin, Z. I. Novikova, Ferrites. Doklady Akademii Nauk SSSR, Minsk, USSR, 1960, 146.
[26]
M. Pal, P. Brahma, D. Chakravorty, J. Magn. Magn. Mater., 1996, 152(3), 370-374.
[27]
K. R. Krishna, K. V. Kumar, D. Ravinder, Adv.Mater.Phys.Chem., 2012, 2, 185-191.
[28]
R. R. Heikes and W. D. Johnston, J. Chem. Phys., 1957, 26(3), 582 587, http://dx.doi.org/10.1063/1.1743350.
[29]
M. E. Shabasgy, J. Magn. Magn. Mater., 1997, 172, 188-192.
[30]
G. B. Kadam, S. B. Shelke and K. M. Jadhav, J Electron Electr Eng., 2010, 1(1), 03-11.
[31]
A. A. Sattar, Egypt. J. Sol., 2003, 26(2), 133-120.
[32]
D. L. Sekulic, Z. Z. Lazarevic, M. V. Sataric, C. D. Jovalekic and N. Z. Romcevic, J Mater Sci: Mater Electron, 2015, 26, 1291–1303.
[33]
S. K. K. Shaath, Advanced Ferrite Technology, LAMBART Academic Publishing, 2012.
[34]
H. Dawoud, L. A-Ouda and S K. K Shaat, Chem. Sci. Trans., 2016, To be published, http://www.e-journals.in/login/accepted_articles.asp.
[35]
H. A. Dawoud and S.K.K. Shaat, The Islamic University Journal, 2006, 114, 165-182.
[36]
M. N. Akhtar, N. Yahya, P. B. Hussain, IJBAS-IJENS, 2009, 09(09), 37-40.
[37]
M S Jebeli and N M B Mohamed, IJMSI, 2013, 1(1), 45-53.
[38]
G. Nabiyouni, M. J. Fesharaki, M. Mozafari, J. Amighian, CHIN. PHYS. LETT., 2010, 27(12), 126401-126404.
[39]
D. Ravinder, Mat. Lett. , 2000, 43, 129-138.
[40]
H. H. Joshi and R. G. Kulkarni, J. Mater. Sci., 1986, 21, 2138-2142.
[41]
M. A. Gilleo. Phys. Rev, 1958, 109, 777-781.
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
CONTACT US
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
E-mail:
LET'S GET IN TOUCH
Name
E-mail
Subject
Message
SEND MASSAGE
Copyright © 2013-, Open Science Publishers - All Rights Reserved