Design and Fabrication of a Machine for Test in Abrasive Wearing According to ASTM G65 Standard
[1]
Reniel Estrada Yanes, Department of Mechanical Engineering, Universidad Central “Marta Abreu” de las Villas, Villa Clara, Cuba.
[2]
Luis Negrin Hernandez, Department of Mechanical Engineering, Universidad Central “Marta Abreu” de las Villas, Villa Clara, Cuba.
[3]
Omar Zamora Morera, Department of Mechanical Engineering, Universidad Central “Marta Abreu” de las Villas, Villa Clara, Cuba.
[4]
Nélson Cárdenas Olivier, Universidade Federal do Vale do Sao Francisco, Juazeiro, Brasil.
[5]
Acácio Figueiredo Neto, Universidade Federal do Vale do Sao Francisco, Juazeiro, Brasil.
In this work is discuss the design and construction of a “dry sand/rubber wheel apparatus” according to the ASTM G 65 Standard, in order to determine the abrasive wear of different materials. Wear damage which entails the loss of material is perhaps the simplest situation to describe quantitatively. The lost by attrition can be determinate by measuring the change of mass or dimensions of the test specimen. ASTM G 65 Standard is widely used by industry to assist the selection of materials for the service in abrasive wear environment. The choice of loads and sliding distance is detailed in A, B, C, D and E test methods described in this standard. The measurements of mass change by this method is usually quick and the materials cost can be low.
ASTM G65, Abrasive Wear, Machine Design, Fabrication, Dry Sand – Rubber Wheel Apparatus
[1]
ASM Handbook, Friction, Lubrication, and Wear Technology, Vol 18, 1992, p 688.
[2]
ASM Handbook, Mechanical Testing and Evaluation, Vol 8, 2000, p 705.
[3]
Guerrero O., Pinzón E. Diseño, construcción y puesta en funcionamiento de un equipo rueda de caucho para el estudio del desgaste abrasivo según norma ASTM G 65. Tesis de Grado. Universidad Industrial de Santander. 2008.
[4]
Niebles, E.E., et al. Metodología para el diseño y construcción de una máquina para medición del desgaste abrasivo basado en la norma ASTM G-65. Prospectiva Vol. 7, No. 1, 2009, pp 53-58.
[5]
Che Wei Kuo, et al. Microstructure and Wear Characteristics of Hypoeutectic, Eutectic and Hypereutectic (Cr,Fe)23C6 Carbides in Hardfacing Alloys. Materials Transactions, Vol. 48, Issue 9, 2007, pp 2324-2328.
[6]
Norma técnica ASTM G 65, Standard Test Method for Measuring Abrasion Using the Dry Sand/Rubber Wheel Apparatus, 2001.
[7]
Vite, M., et al. Equipo tribológico portátil para coadyuvar la técnica de enseñanza-aprendizaje del fenómeno de la abrasión. SAM/CONAMET 2009.
[8]
Marulanda J.L., Zapata A. & Estrada C.A. Construcción de una máquina de ensayo en desgaste abrasivo; según norma técnica ASTM G-65. Scientia et Technica Año XV, No 41, 2009, ISSN 0122-1701.
[9]
Gutiérrez, J.C., et al. Evaluación de la resistencia al desgaste abrasivo en recubrimientos duros para aplicaciones en la industria minera. Sciencia et Technica, Vol. X, No 25, 2004, pp 149-154.
[10]
Česánek, Z., et al. Comparision of abrasive resistance between HVOF thermally sprayed alloy-based and cermet coatings. Metal 2013.
[11]
Klimpel, A. and Kik, T. Erosion and abrasion wear resistance of GMA wire surfaced nanostructural deposits. Archieves of Materials Science and Engineering, Vol. 30, Issue 2, 2008, pp 121-124.
[12]
Adamiak, M., Górka, J. and Kik, T. Comparision of abrasion resistance of selected constructional materials. Journal of Achievements in Materials and Manufacturing Engineering, Vol. 37, Issue 2, 2009, pp 375-380.
[13]
Lisjak, D. and Filetin, T. Predicting the abrasion resistance of tool steels by means of neurofuzzy model. Interdisciplinary Description of Complex Systems, Vol. 11, Issue 3, 2013, pp 334-344.
[14]
Budinski, K.G. Resistance to particle abrasion of selected plastics. Wear 203-204, 1997, pp 302-309.