High Energy Scattering of the Dirac Particle in the Born and Quasi-Classical Approximation
[1]
Vu Toan Thang, Department of Theoretical Physics, Hanoi National University, Ha Noi, Viet Nam.
[2]
Nguyen Nhu Xuan, Department of Physics, Le Qui Don University, Ha Noi, Viet Nam.
In this paper, The Dirac equation is used to find the wave function of two spinor particles interacting with each other in the electromagnetic field. The Born approximation and quasi -classical approximation are used to find this wave function. The relationship between the wave function obtained from both methods is also inferred as equal. Rectangular potential and Yukawa potential are applied to calculate scattering amplitude and differential cross section, and known experimental data is used to calculate numbers and graph. The theoretical results have a good value in high energy experimental orientation
Scattering, Born Approximation, Quasi-Classical Approximation
[1]
R. J. Glauber, Lectures in Theoretical Physics, Vol. 1, New York (1959).
[2]
Han, N. S., Yen, L. H., and Xuan, N. N., IJMPA 27 (1), (2012) 1250004.
[3]
B. M. Barbashov et aI., EChAYa (Soviet Journal of Particles and Nuclei), 4, 623 (1973).
[4]
Han, N. S., and Xuan, N. N., EPJC 24, (2002) 640
[5]
Han, N. S., Yen, L. H., and Xuan, N. N., IJMPA 27 (1), (2012) 1250004.
[6]
Han, N. S., Dung, L. A., Xuan, N. N, Thang V. T,. IJMPA 31, (2016) 1650126
[7]
A. I. Akhiezer, V. F. Boldyshev, and N. F. Shul'ga, Physicotechnical Institute, Academy of Sciences of the Ukrainian SSR. Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 23, No. 1, pp. 11-21, April, 1975.
[8]
I. V. Simenog, O. I. Turovsky, Ukr. J. Phys., V. 50, N. 5, (2005)
[9]
W. Furry, Phys. Rev., 46, 391 (1934); A. Sommerfeld and A. Maue, Ann. Phys., 22, 629 (1935).
[10]
A. I. Akhiezer and V. B. Berestetskii, Quantum Electrodynamics, New York (1965).
[11]
L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Pergamon Press, Oxford (1965).
[12]
Fushchych W. I, Nikitin A. G., J. Phys. A: Math. Gen., 23, (1990) 533-535.
[13]
Nikitin A. G, Fushchych W. I., Teor. Mat. Fiz., 88, N3. (1991) 406-415.
[14]
Onufriichuk S. P., Prylypko O. I. Nonlinear Math. Phys. 3, N3-4, (1996) 388-390.
[15]
Arndt R. A., Ropper L. D., Bryan R. A. et al. Phys. Rev. D., 28, N1, (1983) 97-122.