Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
Advances in Materials Physics: Stability, Electronic and Magnetic Properties of KFeF3, KCoF3, and KNiF3 Fluoroperovskites within GGA+U and Modified Beck Johnson mBJ Approaches
Current Issue
Volume 5, 2018
Issue 5 (October)
Pages: 97-116   |   Vol. 5, No. 5, October 2018   |   Follow on         
Paper in PDF Downloads: 44   Since Sep. 29, 2018 Views: 1203   Since Sep. 29, 2018
Authors
[1]
Fillali Sihem, Faculty of Sciences, Department of Physics, Djillali Liabès University UDL, Condensed Matter and Sustainable Development Laboratory, Sidi Bel-Abbès, Algeria.
[2]
Hamdad Noura, Faculty of Technology, Djillali Liabès University UDL, Sidi Bel-Abbès, Algeria.
Abstract
The electronic and magnetic ground states properties of KFeF3, KCoF3 and KNiF3 Fluorides are studied using the Full-potential Linear Augmented Plane Wave (FP-LAPW) within Linear Muffin-Tin orbitals functional Theory. Features such as Lattices equilibrium, Bulk modulus, and its pressure derivatives are reported for two crystal phases (Cubic Pm-3m, and 4H-Hexagonal P63/mmc). Exchange–correlation effects are treated by the generalized gradient approximation GGA+U and Modified Beck Johnson mBj-GGA potential. The calculated structural parameters by DFT+U (U-Hubbard corrections) and analytical methods are found consistent with the experiments and theoreticals works. The KMF3 (M= Fe, Co, and Ni) family of Fluorides has been found to exhibit the ferromagnetic (FM) character. This behavior is confirmed by the spin-polarized electronic band structures and density of state plots. The current results make them potential multifonctional candidates for optoelectronic and spintronic applications.
Keywords
Fluorides Perovskites, GGA+U, mBJ-GGA, Material Physics, Magnetic Properties
Reference
[1]
V. V. Bannikov, I. R. Shein, V. L. Kozhevnikov, A. L. Ivanovskii, ournal of Magnetism and Magnetic Materials 320, 936 (2008).
[2]
Ivon R. Buitrago, Cecilia I. Ventura, Journal of Magnetism and Magnetic Materials 394, 148, (2015).
[3]
E. Steinbei, K. Steenbeck, T. Eick, K. Kirsch, Vacuum 58, 135 (2000)
[4]
María Luisa Medarde 1997 J. Phys.: Condens. Matter 9, 1679, (1996).
[5]
I. J. R. Baumvol, F. C. Zawislak, R. N. Saxena, Lucia C. Jahnel, Journal of Physics and Chemistry of Solids, 39, 175 (1978).
[6]
a Yanhua Zong, KojiFujita, Hirofumi Akamatsu, Shunsuke Murai, Katsuhisa Tanaka, Journal of Solid State Chemistry 183, 168 (2010).
[7]
E. Greedan, G. J. McCarthy, Mater. Res. Bull. 7 (1972) 531–542.
[8]
K. Fujita, N. Wakasugi, S. Murai, Y. Zong, K. Tanaka, Appl. Phys. Lett. 94 (2009) 062512.
[9]
F. Grandjean, G. J. Long, in: G. J. Long, F. Grandjean (Eds.), M¨ ossbauer Spectroscopy Applied to Inorganic Chemistry, 3, 513, (1989).
[10]
T. Katsufuji, Y. Tokura, Phys. Rev. B 60, R15021 (1999).
[11]
K. Momma, F. Izumi, J. Appl. Crystallogr. 41, 653 (2008).
[12]
V. Viallet, J. F. Marucco, J. Saint, M. Herbst-Ghysel, N. Dragoe, J. Alloys Compd. 461, 346 (2008).
[13]
Anastasia Rocca, Antonio Licciulli, Monia Politi, and Daniela Diso, ISRN Ceramics, 2012, 6 (2012).
[14]
T. Y. Chen, R. Y. Pan, K. Z. Fung, J. Phys. Chem. Solids, 69, 540, (2008).
[15]
A. S. Verma, 158, 34, (2013).
[16]
A. Meldrum, L. A. Boatner b, W. J. Weber c, R. C. Ewing, Journal of Nuclear Materials 300, 242 (2002).
[17]
L. M. Feng, L. Q. Jiang, M. Zhu, H. B. Liu, X. Zhou, C. H. Li, Journal of Physics and Chemistry of Solids 69, 967 (2008).
[18]
A. Gupta, B. W. Hussey, T. M. Shaw, Mater. Res. Bull. 31 (1996) 1463–1470
[19]
L. Grigorjevaa, D. K. Millersa, V. Pankratova, R. T. Williamsb, R. I. Eglitisc, E. A. Kotomina, d, G. Borstel, Solid State Communications 129, 691 (2004).
[20]
H. -J. Donnerberg, Atomic simulations of electrooptical and magnetooptical materials, Springer-Verlag, Berlin, 1999. and O. F. Schirmer, in: G. Borstel (Ed.), Defects and surfaceinduced effects in advanced perovskites, Kluwer, Dordrecht, 151, 75, (2000).
[21]
Toyoto Satoa, Dag Nore´usa, Hiroyuki Takeshitab, Ulrich Ha¨ ussermann, Journal of Solid State Chemistry 178, 3381 (2005).
[22]
J. W. Weenk and H. A. Harwi, Phys. Chrm. Solids. 38, 1055, (1977)
[23]
Syed Gibran Javeda, Asifullah Khan, Abdul Majid, Anwar M. Mirza, J. Bashir, Computational Materials Science 39, 627 (2007).
[24]
R. A. Evarestov, A. V. Bandura, E. N. Blokhin, Surface Science 602, 3674 (2008).
[25]
D. Visser, A. R. Monteith, H. R. R+nnow, W. J. A. Maaskant, Physica B 276, 302 (2000).
[26]
Chun-Lan Ma, Xiao-Dan Wang, Xiao-Hui Song, Xiang Hao, Phys. Lett., A 374, 2388, (2010).
[27]
Kousuke Nishimura, Ikuya Yamada, Kengo Oka, Yuichi Shimakawa, Masaki Azuma, J. Phys. And Chem. Of Solids 75, 710, (2014).
[28]
Hitoshi Yusa, Nagayoshi Sata, and Yasuo Ohishi, American Mineralogist, 92, 648, (2007).
[29]
Rune Søndenå, Svein Stølen, and P. Ravindran, Tor Grande, Neil L. Allan, Phys. Rev. B 75, 184105 (2007).
[30]
F. Gingla, T. Vogtb, E. Akibac, K. Yvon, J. Alloys and Compounds 282, 125 (1999).
[31]
Benhua Luo, Xueye Wang, Peng Jiao, J. Comput. Mater; Scie. 62, 184 (2012).
[32]
Julien Varignon and Philippe Ghosez, Phys. Rev B. 87, 140403, (2013).
[33]
J. G. Zhao, L. X. Yang, Y. Yu, F. Y. Li, R. C. Yu, Z. Fang, L. C. Chen, C. Q. Jin, J. Solid State Chem. 180, 2816 (2007).
[34]
A. C. Garcia-Castro, N. A. Spaldin, A. H. Romero and E. Bousquet, Cond. Mat. Mtrl. Scie. 1, 1311. 2244, (2013).
[35]
C. -Q. Jin, J. -S. Zhou, J. B. Goodenough, Q. Q. Liu, J. G. Zhao, L. X. Yang, Y. Yu, R. C. Yu,, T. Katsura, A. Shatskiy, and E. Ito, Proc Natl Acad Sci U S A. 105, 7115, (2008).
[36]
Mazaheri, M., Fallahi, S., Akhavan, M. Physica B: Physics of Condensed Matter, 406, Issue 18, 3363, (2011).
[37]
E. Jäger, physica status solidi (b) 51, 713, (1972).
[38]
MM. J. P o r t i e r, A. Tressaud, J-L. Dupin et R. de Pape., Mat. Res. Bull. 4, 45, (1969).
[39]
K. Knox, Acta Cryst. 14, 583, (1961).
[40]
R. Fatehally, G. K. Shenoy, N. P. Sastry and R. Nagarajan, Phys. Lett. 25A, 454, (1967)
[41]
E. N. Maslen, N. Spaldaccini, T. Ito, F. Marumo, K. Tanaka, Y. Satow, Acta Crystall. B 49, 632 (1993).
[42]
J. Lee, H. Shin, J. Lee, H. Chung, Q. Zhang, F. Saito, Mater. Trans. 44, 1457 (2003).
[43]
M. Safa and B. K. Tanner, B. J. Garrard and B. M. Wanklyn, J. Crystal Growth 39, 243 (1977).
[44]
M. P. J. Punkkinen, Solid State Communications 111, 477 (1999).
[45]
F. S. Galasso, Perovskites and High Tc Superconductors, Wiley, NewYork, (1990).
[46]
O. Muller, R. Roy, The Major Ternary Structural Families, Springer, New York, (1974).
[47]
Liu Liang, Lu Wencong, Chen Niany, Journal of Physics and Chemistry of Solids 65, 855 (2004)
[48]
M. Kestigian, F. D. Leipziger, W. J. Croft et R. Guidoboni, Inorg. Chem. 5, 1462, (1966).
[49]
A. S. Verma, Solid State Communications 158, 34, (2013).
[50]
S. Piskunov, A. Gopeyenko, E. A. Kotomin, Yu. F. Zhukovskii, D. E. Ellis, Computational Materials Science 41, 195, (2007).
[51]
S. Piskunov, E. Heifets, R. I. Eglitis, G. Borstel, Comp. Mater. Sci. 29, 165 (2004).
[52]
S. Piskunov, E. A. Kotomin, E. Heifets, J. Maier, R. I. Eglitis, G. Borstel, Surf. Sci. 575, 75 (2005).
[53]
D. Munoz, N. M. Harrison, F. Illas, Phys. Rev. B 69, 085115 (2004).
[54]
J. Carrasco, F. Illas, N. Lopez, E. A. Kotomin, Y. F. Zhukovskii, R. A. Evarestov, Y. A. Mastrikov, S. Piskunov, J. Maier, Phys. Rev. B 73, 064106 (2006).
[55]
P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka and J. Luitz, WIEN2k, K. Schwarz, Techn. University at Wien, Austria, 3, 9501031 (2001).
[56]
P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).
[57]
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[58]
K. Schwarz, P. Blaha, G. K. H. Madsen, Computer Physics Communications, 147, 71 (2002).
[59]
Schwarz Karlheinz, Solid State Chem., 176, 319 (2003).
[60]
J. P. Perdew, S. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
[61]
J. P. Perdew and Y. Wang, Phys. Rev. B 33, 8800 (1986).
[62]
J. P. Perdew in ‘Electronic Structure of Solids’, Academie Verlag, Berlin, 11 (1991).
[63]
J. P. Perdew and K. Burke, Int. J. Quantum Chem. 57, 309 (1996).
[64]
F. Tran and P. Blaha, Phys Rev. Lett. 102, 226401 (2009)
[65]
A. D. Becke and E. R. Johnson, J. Chem. Phys. 124, 221101 (2006).
[66]
Tanghong Yi, Wei Chen, Lei Cheng, Ryan D. Bayliss, Feng Lin, Michael R. Plews, Dennis Nordlund, Marca M. Doeff, Kristin A. Persson, and Jordi Cabana, Chem. Mater. 29, 1561 (2017).
[67]
Yamada, Y.; Doi, T.; Tanaka, I.; Okada, S.; Yamaki, J. -i. Liquid phase Synthesis of Highly Dispersed NaFeF3 Particles and Their Electrochemical Properties for Sodium-ion Batteries. J. Power Sources 196, 4837 (2011).
[68]
Dimov, N.; Nishimura, A.; Chihara, K.; Kitajou, A.; Gocheva, I. D.; Okada, S. Transition Metal NaMF3 Compounds as Model Systems
[69]
Atsushi Okazaki, Yasutaka Suemune, Journal of the Physical Society of Japan, 16, 671 (1961).
[70]
Noura Hamdad, Physica B 406 (2011) 1194–1203
[71]
Chaplygin I, Seifert G, Gemming S, Laskowski R. Comput Mater Sci 2008; 44: 79.
[72]
Hamdad Noura, Superlattices and Microstructures, 76, 2014, Pages 425-435
[73]
N. Hamdad, H. Rozale, A. Lakdja, A. Chahed, O. Benhelal, Superlattices and Microstructures 63 (2013) 182-196.
[74]
H. J. Monkhorst, J. D. Pack, Phys. Rev. B 13, 5192 (1976).
[75]
F. D. Murnaghan, Proc. Natl. Acad. Sci. USA, 30, 5390 (1944).
[76]
C. Cros, R. Feurer et M. Poucliard, J. Fluorinr Chem., 7, 605 (1976).
[77]
Roberto L. Moreiraa, and Anderson Dias; Comment on “Prediction of lattice constant in cubic perovskites”
[78]
M M. J. P o r t i e r, A. Tressaud, J-L. Dupin et R. de Pape., Mat. Res. Bull. 4, 45, (1969).
[79]
Hayatullah a, G. Murtaza b,⇑, R. Khenata c, S. Muhammada, A. H. Reshak d, e, Kin Mun Wongf, S. Bin Omran g, Z. A. Alahmed, Computational Materials Science 85, 402 (2014).
[80]
J. Lee, H. Shin, H. Chung, Q. Zhang, F. Saito, Mater. Trans. 44, 1457 (2003).
[81]
M. Abdul, S. L. Yeon, Adv. Inf. Sci. Serv. Sci. 2, 3 (2010).
[82]
M. P. J. Punkkinen, Solid State Communications 111, 477 (1999).
[83]
J. Silver, Journal of Fluorine Chemistry, 8, 527 (1976).
[84]
A. Okazaki, Y. Suemune, T. Fuchikami, J. Phys. Soc. Jpn 14, 1823 (1959).
[85]
R. W. G. Wyckoff, Crystal Structures, Interscience, New York, 2, 392 (1960).
[86]
J. Julliard, J. Nouet, Analyse radiocristallographique de la distorsion magnetostrictive dans les antiferromagn_etiques KCoF3, RbCoF3 et TlCoF3, HAL, archives-ouvertes. fr.
[87]
Purnendu Parhi, V. Manivannan, Materials Letters 62, 3468 (2008).
[88]
L. J. De Jongh, Physica B 79, 568 (1975).
[89]
C. G. Shull and J. S. Smart, Phys. Rev. 76, 1256 (1949).
[90]
J. Becquerel, W. J. de Haas and J. van den Handel, Physica 1, 383 (1934).
[91]
H. A. Kramers, Physica 1, 182 (1934).
[92]
A. C. Garcia-Castro, N. A. Spaldin, A. H. Romero, and E. Bousquet, Cond. Mat. Mtrl. Sci, 1, 1311 (2013).
[93]
E. P. Maarchall, A. C. Botterman, S. Vega and A. R. Miedema, Physica 41, 473 (1969).
[94]
Meng Zhang, Zhenghua Wang, Maosong Mo, Xiangying Chen, Rui Zhang, Weichao Yu, Yitai Qian, Materials Chemistry and Physics 89, 373 (2005).
[95]
A. Labdeli and N. Hamdad, Results in Physics, 2015, 5, 38-52
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
CONTACT US
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
E-mail:
LET'S GET IN TOUCH
Name
E-mail
Subject
Message
SEND MASSAGE
Copyright © 2013-, Open Science Publishers - All Rights Reserved