On Tensors and Equations of the Electromagnetic Field
[1]
Yuriy A. Spirichev, Scientific Department, «Research and Design Institute of Radio-Electronic Engineering», Zarechny, Russia.
It is shown that the electromagnetic field is completely described by an asymmetric tensor of the second rank, which is a four-dimensional derivative of the electromagnetic potential. This tensor can be decomposed into the canonical antisymmetric and the new symmetric EMF tensor. From this tensor, in the form of its complete divergence, the EMF equations follow. One of them is an electromagnetic analog of the Lame equation for an elastic medium. It is shown that the longitudinal waves of the divergence of the vector potential propagate at a speed greater than the speed of light and do not have a magnetic component.
Electromagnetic Field, Asymmetric Tensor, Symmetric Tensor, Maxwell Equations, Longitudinal Waves
[1]
I. Brevik, Minkowski momentum resulting from a vacuum–medium mapping procedure, and a brief review of Minkowski momentum experiments, Annals of Physics 377 (2017) 10–21.
[2]
R. Medina and J. Stephany, The energy-momentum tensor of electromagnetic fields in matter, arXiv: 1703.02109.
[3]
M. G. Silveirinha, Revisiting the Abraham-Minkowski Dilemma, arXiv: 1702.05919.
[4]
J. J. Bisognano, Electromagnetic Momentum in a Dielectric: a Back to Basics Analysis of the Minkowski-Abraham Debate, arXiv: 1701.08683.
[5]
Yu. A. Spirichev, Electromagnetic energy, momentum and forces in a dielectric medium with losses, arXiv: 1705.08447.
[6]
M. E. Crenshaw, The Role of Conservation Principles in the Abraham--Minkowski Controversy, arXiv: 1604.01801.
[7]
C. Wang, Is the Abraham electromagnetic force physical?, Optik, (2016) 127, 2887–2889.
[8]
P. L. Saldanha, J. S. Oliveira Filho, Hidden momentum and the Abraham-Minkowski debate, arXiv: 1610.05785.
[9]
M. Testa, A Comparison between Abraham and Minkowski Momenta, Journal of Modern Physics, 2016, 7, 320-328.
[10]
C. J. Sheppard, B. A. Kemp, Phys. Rev. A 93 (2016) 053832.
[11]
N. Toptygin, K. Levina, Phys. Usp. 59 141 (2016).
[12]
V. V. Nesterenko, A. V. Nesterenko, Ponderomotive forces in electrodynamics of moving medium: The Minkowski and Abraham approaches, arXiv: 1604.01708.
[13]
C. Wang, J. Ng, M. Xiao, C. T. Chan, Sci. Adv. 2 (2016) e1501485.
[14]
M. Abragam, Be. Circ. mat. Palermo 28, 1 (1909), 31, 527 (1910).
[15]
F. J. Belinfante, Physica 6, 887 (1939).
[16]
Yu. A. Spirichev, A new form of the energy-momentum tensor of the interaction of an electromagnetic field with a non-conducting medium. The wave equations. The electromagnetic forces, arXiv: 1704.03815.
[17]
McDonald K T, Bibliography on the AbrahamëMinkowski debate (February 17, 2015, updated September 29, 017), http://physics.princeton.edu/~mcdonald/examples/ambib.pdf
[18]
E. Leader and C. Lorce, The angular momentum controversy: What’s it all about and does it matter? Phys. Rep. 541, 163 (2014).
[19]
K. Y. Bliokh, A. Y. Bekshaev and F. Nori, Optical momentum and angular momentum in dispersive media: From the Abraham–Minkowski debate to unusual properties of surface plasmon-polaritons, arXiv: 1706.05493.
[20]
K. Y. Bliokh, A. Y. Bekshaev and F. Nori, Optical Momentum, Spin, and Angular Momentum in Dispersive Media, arXiv: 1706.06406.
[21]
E. Leader, The photon angular momentum controversy: Resolution of a conflict between laser optics and particle physics, Phys. Lett. B 756, 303 (2016).
[22]
Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, From transverse angular momentum to photonic wheels, Nature Photon. 9, 789 (2015).
[23]
G. V. Nikolaev, Non-contradictory electrodynamics. Theories, experiments, paradoxes, (Tomsk, NTL Publishing, 1997).
[24]
A. K. Tomilin, The Fundamentals of Generalized Electrodynamics, arXiv: 0807.2172.
[25]
V. Simulik, Longitudinal electromagnetic waves in the framework of standard classical electrodynamics, arXiv: 1606.01738.
[26]
S. Nedic, Longitudinal Waves in Electromagnetism, INFOTEH-JAHORINA, Vol. 16, March 2017.
[27]
L. D. Landau, E. M. Lifshits, The Classical Theory of Fields, (Oxford: Pergamon Press, 1983).
[28]
L. D. Landau, E. M. Lifshits, The Theory of elasticity, (Oxford: Pergamon Press, 1983).