Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
Coating Gradient Effect on Contact Angle in Electrowetting
Current Issue
Volume 5, 2018
Issue 4 (August)
Pages: 70-76   |   Vol. 5, No. 4, August 2018   |   Follow on         
Paper in PDF Downloads: 34   Since Aug. 24, 2018 Views: 1091   Since Aug. 24, 2018
Authors
[1]
Abdulwahab S. Aljuhani, Chemical Engineering Department, Yanbu Industrial College, Yanbu, Saudi Arabia.
[2]
Dinesh Lolla, Bioscience and Water Filtration Division, Parker-Hannifin Corporation, Oxnard, USA.
[3]
Ahmed Abutaleb, Department of Chemical Engineering, Jazan University, Jazan, Saudi Arabia.
[4]
George G. Chase, Department of Chemical and Biomolecular Engineering, the University of Akron, Akron, USA.
Abstract
The ability to control the movement of microliter water droplets in different types of electrowetting setups has been reported in literature. In this work, we report a method for controlling micro droplet movement along gradient coating. Poly (styrene-co-methyl methacrylate) film was created on Indium Tin Oxide (ITO) coated glass slides. The films had a gradient. Apparent Contact angle change in electrowetting setup was monitored and characterized with 4 different voltages: 300 VDC, 400 VDC, 500 VDC and 550 VDC. The water microdroplet was observed to move distances as much as 1.6 cm at an average speed of 34 ± 1 mm/s along the surface of the coated ITO glass slides at about 520 VDC.
Keywords
Surface Coating, Microfluidics, Dielectric Materials, Electrowetting, Filtration
Reference
[1]
Ahmed, R.; Jones, T. B. Dispensing picoliter droplets on substrates using dielectrophoresis. J. Electrostat. 2006, 64, 543-549.
[2]
Berthier, J.; Clementz, P.; Raccurt, O.; Jary, D.; Claustre, P.; Peponnet, C.; Fouillet, Y. Computer aided design of an EWOD microdevice. Sensors Actuators A Phys. 2006, 127, 283-294.
[3]
Cubaud, T.; Fermigier, M. Advancing contact lines on chemically patterned surfaces. J. Colloid Interface Sci. 2004, 269, 171-177.
[4]
Zhao, B.; Moore, J. S.; Beebe, D. J. Surface-directed liquid flow inside microchannels. Science 2001, 291, 1023-6.
[5]
Koopal, L. K. Wetting of solid surfaces: fundamentals and charge effects. Adv. Colloid Interface Sci. 2012, 179-182, 29-42.
[6]
Mugele, F.; Baret, J.-C. Electrowetting: from basics to applications. J. Phys. Condens. Matter 2005, 17, R705-R774.
[7]
Bayiati, P.; Tserepi, A.; Petrou, P. S.; Kakabakos, S. E.; Misiakos, K.; Gogolides, E. Electrowetting on plasma-deposited fluorocarbon hydrophobic films for biofluid transport in microfluidics. J. Appl. Phys. 2007, 101, 103306.
[8]
Krogmann, F.; Mönch, W.; Zappe, H. Electrowetting for Tunable Microoptics. J. microelectromechanical Syst. 2008, 17, 1501-1512.
[9]
Buehrle, J.; Herminghaus, S.; Mugele, F. Interface Profiles near Three-Phase Contact Lines in Electric Fields. Phys. Rev. Lett. 2003, 91, 086101.
[10]
Bienia, M.; Vallade, M.; Quilliet, C.; Mugele, F. Electrical-field–induced curvature increase on a drop of conducting liquid. Europhys. Lett. 2006, 74, 103-109.
[11]
Klarman, D.; Andelman, D.; Urbakh, M. A model of electrowetting, reversed electrowetting, and contact angle saturation. Langmuir 2011, 27, 6031-41.
[12]
Chevalliot, S.; Kuiper, S.; Heikenfeld, J. Experimental Validation of the Invariance of Electrowetting. J. Adhes. Sci. Technol. 2011, 1-22.
[13]
Sedev, R. Electrowetting: Electrocapillarity, saturation, and dynamics. Eur. Phys. J. Spec. Top. 2011, 197, 307-319.
[14]
Decamps, C.; De Coninck, J. Dynamics of Spontaneous Spreading under Electrowetting Conditions. Langmuir 2000, 16, 10150-10153.
[15]
Zhao, Y.-P.; Wang, Y. Fundamentals and Applications of Electrowetting. Rev. Adhes. Adhes. 2013, 1, 114-174.
[16]
Monroe, C. W.; Daikhin, L. I.; Urbakh, M.; Kornyshev, A. A. Electrowetting with Electrolytes. Phys. Rev. Lett. 2006, 97, 1-4.
[17]
Quilliet, C.; Berge, B. Electrowetting: a recent outbreak. Curr. Opin. Colloid Interface Sci. 2001, 6, 34-39.
[18]
Yi, U.-C.; Kim, C.-J. Characterization of electrowetting actuation on addressable single-side coplanar electrodes. J. Micromechanics Microengineering 2006, 16, 2053-2059.
[19]
Lee, J. H.; Lee, K. H.; Won, J. M.; Rhee, K.; Chung, S. K. Mobile oscillating bubble actuated by AC-electrowetting-on-dielectric (EWOD) for microfluidic mixing enhancement. Sensors Actuators A Phys. 2012, 182, 153-162.
[20]
Banerjee, A. N.; Qian, S.; Joo, S. W. High-speed droplet actuation on single-plate electrode arrays. J. Colloid Interface Sci. 2011, 362, 567-74.
[21]
Hu, L.; Gruner, G.; Gong, J.; Kim, C.-J. “Cj”; Hornbostel, B. Electrowetting devices with transparent single-walled carbon nanotube electrodes. Appl. Phys. Lett. 2007, 90, 093124.
[22]
Lebrasseur, E.; Al-Haq, M. I.; Choi, W.-K.; Hirano, M.; Tsuchiya, H.; Torii, T.; Higuchi, T.; Yamazaki, H.; Shinohara, E. Two-dimensional electrostatic actuation of droplets using a single electrode panel and development of disposable plastic film card. Sensors Actuators A Phys. 2007, 136, 358-366.
[23]
Lin, Y.-Y.; Evans, R. D.; Welch, E.; Hsu, B.-N.; Madison, A. C.; Fair, R. B. Low Voltage Electrowetting-on-Dielectric Platform using Multi-Layer Insulators. Sens. Actuators. B. Chem. 2010, 150, 465-470.
[24]
O. Izadpanahi, A. N. Meidani, G. J. Abed and M. Passandideh-Fard, "Numerical investigation of water drop movement within a microchannel under electrowetting phenomenon," in Conference Proceedings of 2015 2nd International Conference on Knowledge-Based Engineering and Innovation, KBEI 2015, 2016.
[25]
J. Kleinert, V. Srinivasan, A. Rival, C. Delattre, O. D. Velev and V. K. Pamula, "The dynamics and stability of lubricating oil films during droplet transport by electrowetting in microfluidic devices," Biomicrofluidics, 2015.
[26]
Y. Lu, A. Sur, C. Pascente, S. Ravi Annapragada, P. Ruchhoeft and D. Liu, "Dynamics of droplet motion induced by Electrowetting," International Journal of Heat and Mass Transfer, 2017.
[27]
J. Nie, Z. Ren, J. Shao, C. Deng, L. Xu, X. Chen, M. Li and Z. L. Wang, "Self-Powered Microfluidic Transport System Based on Triboelectric Nanogenerator and Electrowetting Technique," ACS Nano, 2018.
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
CONTACT US
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
E-mail:
LET'S GET IN TOUCH
Name
E-mail
Subject
Message
SEND MASSAGE
Copyright © 2013-, Open Science Publishers - All Rights Reserved