Relationships between Electromagnetic and Mechanical Characteristics of Electron
[1]
Alexander K. Tomilin, National Research Tomsk Polytechnic University, Tomsk, Russian Federation.
[2]
Igor L. Misiucenko, Research Center "Algorithm", St. Petersburg, Russian Federation.
[3]
Vladimir C. Vikulin, “High pass VLSI Laboratory” Ltd, St. Petersburg, Russian Federation.
A relationship between electron charge and electron mass was established based on energy relations. A conclusion was drawn about solely electromagnetic nature of mass. Hence, the generalized magnetic field has vortex (vector) components and potential (scalar) component. It was also established that energy of potential magnetic field is negative and constitutes 1/3 of kinetic energy of particle. Besides, the well-known “problem 4/3” is solved successfully.
Mass, Charge, Electron Radius, Physical Vacuum, Vector Potential, Energy of Magnetic Field
[1]
Feynman R., Layton R, Sands M.: Feynman Lectures on Physics. Volume 6: Electrodynamics. Translated from English (edition 3). Mir, Moscow (1977).
[2]
Thomson J. J.: On the Electric and Magnetic Effects produced by the Motion of Electrified Bodies. Philosophical Magazine, 5 11 (68): 229–249. 10.1080/14786448108627008
[3]
Maxwell J.: Treatise on Electricity and Magnetism. In two volumes. Nauka, Moscow (1989).
[4]
Stokes G. G. On some cases of fluid motion on Internet Archive. Transactions of the Cambridge Philosophical Society 8 (1): 105–137 (1843).
[5]
Mitkevich V. F.: “Physical” action at a distance. Proceedings of the Russian Academy of Science. Series VII. Division of mathematical and natural science, 1391–1409 (1933). http://books.e-heritage.ru/book/10081581
[6]
Zhilin P. A.: Reality and Mechanics. Proceedings of XXIII school-seminar “Analysis and synthesis of nonlinear mechanical oscillating systems”. IP Mash of Academy of Science. St. Petersburg, pp. 6-49 (1996). http://teormeh.spbstu.ru/Zhilin_New/pdf/Zhilin_Reality_rus.pdf
[7]
K. J. van Vlaenderen, Waser A.: Generalization of classical electrodynamics to admit a scalar field and longitudinal waves. Hadronic Journal 24, pp. 609-628 (2001).
[8]
Woodside D. A.: Three-vector and scalar field identities and uniqueness theorems in Euclidean and Minkowski spaces. American Journal of Physics, Vol.77, № 5, pp.438- 446, (2009).
[9]
Arbab A. I., Satti Z. A.: On the Generalized Maxwell Equations and Their Prediction of Electroscalar Wave. Progress in physics, v.2.- pp.. 8-13 (2009).
[10]
Podgainy D. V., Zaimidoroga O. A.: Nonrelativistic theory of electroscalar field and Maxwell electrodynamics. http://arxiv.org/pdf/1005.3130.pdf
[11]
Alexeyeva L. A.: Biquaternionic Model of Electro-Gravimagnetic Field, Charges and Currents. Law of Inertia. Journal of Modern Physics, 2016, 7, pp.435-444. http://dx.doi.org/10.4236/jmp.2016.75045
[12]
Tomilin A. K.: Foundations of generalized electrodynamics. Internet-Journal of Saint Petersburg State Technological University “Mathematics at universities”, №17 (2009). http://www.spbstu.ru/publications/m_v/N_017/frame_17.html
[13]
Nefedov E. I.: Electromagnetic fields and waves. Learning Guide. Academia, Moscow (2014).
[14]
Tomilin A. K.: The potential-vortex theory of electromagnetic waves. Journal of Electromagnetic Analysis and Applications, v.5, № 9. pp. 347-353 (2013). http://dx.doi.org/10.4236/jemaa.2013.59055
[15]
Nikolaev G. V.: Modern Electrodynamics and Reasons for its Paradoxicality. Tverdynya Tomsk (2003). http://doverchiv.narod.ru/Nikolaev/Nikolaev_modern_electrodynamics.htm
[16]
Misyuchenko I., Vikulin V.: Electromagnetic mass and solution for problem 4/3. http://electricaleather.com/d/358095/d/em43_1.pdf
[17]
Rohrlich F.: The dynamics of a charged sphere and the electron. American Journal of Physics 65 (11): pp.1051–1056 (1997). 1997AmJPh.. 65.1051R , doi:10.1119/1.18719
[18]
Schwinger J. Electromagnetic mass revisited// Foundations of Physics, 13 (3): pp. 373-383, (1983). 10.1007/BF01906185
[19]
Fedosin S. G.: The Integral Energy-Momentum 4-Vector and Analysis of 4/3 Problem Based on the Pressure Field and Acceleration Field. American Journal of Modern Physics. Vol. 3, №. 4, pp. 152-167 (2014).
[20]
Fedosin S. G.: 4/3 Problem for the Gravitational Field. Advances in Physics Theories and Applications. Vol. 23, pp. 19–25 (2013).
[21]
Lorentz G. A.: The theory of electrons and its application to the phenomena of light and heat radiation. Moscow (1956)
[22]
Kiryako A. G.: Theories of origin and generation of mass. http://electricaleather.com/d/358095/d/massorigin.pdf
[23]
Daywitt W. C.: A Planck Vacuum Pilot Model for Inelastic Electron-Proton Scattering. Progress in Physics. Vol. 11 (2015), pp. 308-310.
[24]
Artsimovich L. A.: Elementary Physics of Plasma. Moscow (1963).
[25]
Sarapulov F. N. Calculation of parameters for circuits of electro-technological installations. Learning Guide. Ekaterinburg (1999). http://window.edu.ru/resource/485/28485/files/ustu092.pdf
[26]
Tomilin K. A.: Planckian values. 100 years to quantum theory. History, Physics. Philosophy: Proceeding of International Conference. NIA-Priroda, Moscow, pp. 105–113 (2002).
[27]
Parcell E.: Electricity and Magnetism. Berkeley course of physics. V..2. Nauka, Moscow (1975).
[28]
Chang D. C., Lee Y.-K.: Study on the Physical Basis of Wave-Particle Duality: Modeling the Vacuum as a Continuous Mechanical Medium. Journal of Modern Physics, 6, pp. 1058-1070 (2015). http://dx.doi.org/10.4236/jmp.2015.68110
[29]
Misyuchenko I.: Last Secret of God. St. Petersburg (2009). http://electricaleather.com/d/358095/d/poslednyaya-tayna-boga.pdf
[30]
Helmholtz H.: About integrals of hydrodynamic equations, which correspond to the vortex motion. Crelles J. 55, 25 (1858).
[31]
Fock V. A.: Theory of space, time and gravitation., Moscow (1955).
[32]
Andreev V. D.: Selected problems of theoretical physics. Avanpost-Prim, Kiev (2012). http://www.twirpx.com/file/1135625/
[33]
Nikolaev G. V.: Electrodynamics of physical vacuum. New concepts of physical world. Tomsk (2004). http://electricaleather.com/d/358095/d/nikolayevg.v.elektrodinamikafizicheskogovakuuma.pdf