Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
Structures and Vibrational Frequencies of 1,5-Dimethylnaphthalene and 2,6-Dimethylnaphthalene Based on Density Functional Theory Calculations
Current Issue
Volume 2, 2015
Issue 5 (October)
Pages: 81-98   |   Vol. 2, No. 5, October 2015   |   Follow on         
Paper in PDF Downloads: 57   Since Sep. 16, 2015 Views: 1868   Since Sep. 16, 2015
Authors
[1]
V. Krishnakumar, Department of Physics, Periyar University, Salem, Tamilnadu, India.
[2]
M. Kumar, Department of Physics, Government Arts College (Autonomous), Salem, Tamilnadu, India.
[3]
S. SivaKumar, Department of Physics, Government Arts College (Autonomous), Salem, Tamilnadu, India.
[4]
K. Mangaiarkkarasi, Department of Physics, Government Arts College (Autonomous), Salem, Tamilnadu, India.
[5]
N. Jayamani, Department of Physics, NKR Government Arts College (W), Namakkal, Tamilnadu, India.
Abstract
The FT-IR and FT-Raman spectra of 1,5-dimethylnaphthalene (15DMN) and 2,6-dimethylnaphthalene (26DMN) were recorded in the regions 4000-400 cm-1 and 4000-100 cm-1. The fundamental vibrational frequencies and intensity of vibrational bands were evaluated using density functional theory (DFT) and standard B3LYP/6-311+G** basis set combination. The obtained vibrational spectra were interpreted, with the aid of normal coordinate analysis based on a scaled quantum mechanical (SQM) force field. The infrared and Raman spectra were predicted from the calculated intensities. Comparison of simulated and experimental spectra explores important information about the ability of the computational method in describing the vibrational modes. Unambiguous vibrational assignments for all the fundamental frquencies were made using the total energy distribution (TED). Further, density functional theory (DFT) combined with quantum chemical calculations to determine the first-order hyperpolarizability.
Keywords
1,5-Dimethylnaphthalene and 2,6-Dimethylnaphthalene, DFT, FTIR, FT-Raman, Hyperpolarizability, HOMO-LUMO, Electronic Excitation
Reference
[1]
J. C. Arcos, M. F. Argus, Adv. Cancer Res. 11 (1969) 305–471.
[2]
D. Hoffmann, E. L. Wynder, Organic particulate pollutants chemical analysis and bioassays for carcinogenicity in Air Pollution, Academic Press, New York, NY, USA, 1977.
[3]
H. V. Gelboin, P. O. P. Ts’o, Polycyclic Hydrocarbons and Cancer, Academic Press, New York, USA, 1978.
[4]
R. G. Harvey, Polycyclic Aromatic Hydrocarbons: Chemistry and Carcinogenicity, Cambridge University Press, Cambridge, UK, 1991.
[5]
B. J. Finlayson-Pitts, J. N. Pitts, Chemistry of the Upper and Lower Atmosphere, Academic Press, San Diego, Calif, USA, 2000.
[6]
C. A. Peters, “Coal tar dissolution in water-misclble solvents: experimental evaluation,” Environment Science Technology, 1993.
[7]
K. L. Garcia, J. J. Delfino, D. H. Powell, “Non-regulated organic compounds in Florida sediments,” Water Research, 1993.
[8]
L. P. Burkhard, B. R. Sheedy, “Evaluation of screening procedures for bioconcentratable organic chemicals in effluents and sediments,” Environmental Toxicology and Chemistry, 1995.
[9]
R. Atkinson, S. M. Aschmann, “Kinetics of the reactions of naphthalene, 2-methylnaphthalene, and 2,3-dimethylnaphthalene with OH radicals and with O3 at 295 ± 1 K,” International Journal of Chemical Kinetics, 1986.
[10]
C. E. Banceu, C. Mihele, D. A. Lane, N. J. Bunce, “Reactions of methylated naphthalenes with hydroxyl radicals under simulated atmospheric conditions,” Polycyclic Aromatic Compounds, 2001.
[11]
P. T. Phousongphouang, J. Arey, “Rate constants for the gas-phase reactions of a series of alkylnaphthalenes with the OH radical,” Environmental Science and Technology, 2002.
[12]
K. H. Wammer, C. A. Peters, “Polycyclic aromatic hydrocarbon biodegradation rates: A Structure-based Study,” Environmental Science and Technology, 2005.
[13]
B. A. Hess Jr., J. Schaad, P. Carsky, R. Zahraduik, Chem. Rev. 86, (1986) 709-730.
[14]
P. Pulay, X. Zhou, G. Fogarasi, in: R. Fransto (Ed.), NATO AS Series, (1993).
[15]
W. J. Hehre, L. Radom, P.V.R. Schleyer, J.A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986.
[16]
D. N. Shin, J. W. Hahn, K. H. Jung, T. K. Ha, J. Raman Spec. 29 (1998) 245-249.
[17]
C. E. Blom, C. Altona, Mol. Phys., 31 (1976) 1377-1391.
[18]
A. D. Becke, J. Chem. Phys., 98 (1993) 5648-5652.
[19]
C. Lee, W. Yang, R. G. Parr, Phys. Rev., B37 (1988) 785-789.
[20]
P. Pulay, Mol. Phys., 17 (1969) 197-204.
[21]
Y. N. Panchenko, J. Mol. Struct., 567 (2001) 217-230.
[22]
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.
[23]
A. D. Becke, J. Chem. Phys., 96 (1992) 2155-2160.
[24]
T. Ziegler, Chem. Rev. 91, (1991) 651-667.
[25]
G. Rauhut, P. Pulay, J. Phys. Chem.99, (1995) 3093-3100.
[26]
T. Sundius, J. Mol. Struct., 218 (1990) 321-326.
[27]
A. Frisch, A.B. Nielson and A. J. Holder, Gaussview Users Mannual, Gaussian Inc., Pittsburgh, PA (2000).
[28]
P.L. Polavarapu, J. Phys. Chem. 94 (1990) 8106-8112.
[29]
G. Keresztury, S. Holly, J. Varga, G. Besenyei, A. V. Wang, J.R. Durig, Spectrochim. Acta 49A, (1993) 2007-2026.
[30]
G. Keresztury, in: J.M. Chalmers and P.R. Griffiths(Eds), Handbook of Vibrational Spectroscopy vol.1, John Wiley & Sons Ltd. p. 71, (2002).
[31]
H. D. Cohen, C. C. J. Roothan, J. Chem. Phys. 43 (1965) S34-39.
[32]
P. Pulay, G. Fogarasi, F. Pong, J.E. Boggs, J. Am. Chem. Soc., 101 (1979) 2550-2560.
[33]
G. R. De Mare, Yu. N. Panchenko, J. Phys. Chem., 98 (1994) 8315-8319.
[34]
C. Moller, M.S. Plesset, Phys. Rev., 46 (1934) 618-622.
[35]
W. H. Fletcher, W.T. Thomson, J. Mol. Spectry., 25 (1968) 240-268.
[36]
B. K. Sharma, Spectroscopy, GOEL Publishing House, Meerut, Eleventh Editions, 1995.
[37]
B. P. Stranghan. S. Walker, Spectroscopy, Vol.2, Chapman and Hall, London, 1976.
[38]
L. Pauling, The Nature of the Chemical Bonds, Cornell Univ. Press, Itheca, 1970.
[39]
D. A. Kleinman, Phys. Rev. 126 (1962)1977-1979.
[40]
K. Wu, C. Liu, C. Mang, Opt. Mater. 29 (2007) 1129–1137.
[41]
S. Iran, W.M.F. Fabian, Dyes Pigments 70 (2006) 91–96.
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
CONTACT US
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
E-mail:
LET'S GET IN TOUCH
Name
E-mail
Subject
Message
SEND MASSAGE
Copyright © 2013-, Open Science Publishers - All Rights Reserved