Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
Connection Between Time Quantization in the Frame of Non-Local Relativistic Physics and Shannon-Nyquist-Kotelnikov Theorem
Current Issue
Volume 2, 2015
Issue 3 (June)
Pages: 40-57   |   Vol. 2, No. 3, June 2015   |   Follow on         
Paper in PDF Downloads: 18   Since Aug. 28, 2015 Views: 1725   Since Aug. 28, 2015
Authors
[1]
Boris V. Alexeev, Physics Department, Moscow Lomonosov State University of Fine Chemical Technologies, Moscow, Russia.
Abstract
The aim of the sampling theorem consists in obtaining a formula for reconstruction of the original signal. The constructive proof of the theorem leads to an understanding of the aliasing that can occur when a sampling system does not satisfy the conditions of the theorem. From the first glance the sampling theorem has only mathematical content leaving aside the physical origin of the time quantization. In the following paper is shown that the sampling theorem is a consequence of relativistic non-local physics.
Keywords
Time Quantization, Shannon-Nyquist-Kotelnikov Theorem, Non-Local Relativistic Hydrodynamics, Sampling Theorem
Reference
[1]
Nyquist H. Certain topics in telegraph transmission theory. Trans. AIEE, vol. 47, pp. 617—644, Apr. 1928.
[2]
Котельников В. А. О пропускной способности эфира и проволоки в электросвязи — Всесоюзный энергетический комитет. // Материалы к I Всесоюзному съезду по вопросам технической реконструкции дела связи и развития слаботочной промышленности, 1933. Репринт статьи в журнале УФН (Physics - Uspekhi), 176:7 (2006), 762—770.
[3]
Shannon C.E. Communication in the presence of noise. Proc. Institute of Radio Engineers, vol. 37, no.1, pp. 10—21, Jan. 1949.
[4]
Alexeev B.V, Generalized Boltzmann Physical Kinetics, Elsevier Amsterdam, The Netherlands (2004) 368p.
[5]
Alexeev B.V, Unified Non-local Theory of Transport Processes, Elsevier Amsterdam, The Netherlands (2015) 644p.
[6]
Alexeev B.V., Ovchinnikova I.V., J. Nanoelectron. Optoelectron. Part 1, 5, 1-14 (2010).
[7]
Alexeev B.V., Ovchinnikova I.V., J. Nanoelectron. Optoelectron. Part 2, 5, 15-27 (2010).
[8]
Alexeev B.V., The Generalized Boltzmann Equation, Generalized Hydrodynamic Equations and their Applications, Phil. Trans. Roy. Soc. Lond., 349, 417 (1994).
[9]
B.V. Alexeev, The Generalized Boltzmann Equation, Physica A, 216, 459 (1995).
[10]
Cercignani C., Kremer G.M. The Relativistic Boltzmann Equation: Theory and Application. Birkhäuser Verlag. Basel, Boston, Berlin, 2002, 384p.
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
CONTACT US
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
E-mail:
LET'S GET IN TOUCH
Name
E-mail
Subject
Message
SEND MASSAGE
Copyright © 2013-, Open Science Publishers - All Rights Reserved