Connection Between Time Quantization in the Frame of Non-Local Relativistic Physics and Shannon-Nyquist-Kotelnikov Theorem
[1]
Boris V. Alexeev, Physics Department, Moscow Lomonosov State University of Fine Chemical Technologies, Moscow, Russia.
The aim of the sampling theorem consists in obtaining a formula for reconstruction of the original signal. The constructive proof of the theorem leads to an understanding of the aliasing that can occur when a sampling system does not satisfy the conditions of the theorem. From the first glance the sampling theorem has only mathematical content leaving aside the physical origin of the time quantization. In the following paper is shown that the sampling theorem is a consequence of relativistic non-local physics.
Time Quantization, Shannon-Nyquist-Kotelnikov Theorem, Non-Local Relativistic Hydrodynamics, Sampling Theorem
[1]
Nyquist H. Certain topics in telegraph transmission theory. Trans. AIEE, vol. 47, pp. 617—644, Apr. 1928.
[2]
Котельников В. А. О пропускной способности эфира и проволоки в электросвязи — Всесоюзный энергетический комитет. // Материалы к I Всесоюзному съезду по вопросам технической реконструкции дела связи и развития слаботочной промышленности, 1933. Репринт статьи в журнале УФН (Physics - Uspekhi), 176:7 (2006), 762—770.
[3]
Shannon C.E. Communication in the presence of noise. Proc. Institute of Radio Engineers, vol. 37, no.1, pp. 10—21, Jan. 1949.
[4]
Alexeev B.V, Generalized Boltzmann Physical Kinetics, Elsevier Amsterdam, The Netherlands (2004) 368p.
[5]
Alexeev B.V, Unified Non-local Theory of Transport Processes, Elsevier Amsterdam, The Netherlands (2015) 644p.
[6]
Alexeev B.V., Ovchinnikova I.V., J. Nanoelectron. Optoelectron. Part 1, 5, 1-14 (2010).
[7]
Alexeev B.V., Ovchinnikova I.V., J. Nanoelectron. Optoelectron. Part 2, 5, 15-27 (2010).
[8]
Alexeev B.V., The Generalized Boltzmann Equation, Generalized Hydrodynamic Equations and their Applications, Phil. Trans. Roy. Soc. Lond., 349, 417 (1994).
[9]
B.V. Alexeev, The Generalized Boltzmann Equation, Physica A, 216, 459 (1995).
[10]
Cercignani C., Kremer G.M. The Relativistic Boltzmann Equation: Theory and Application. Birkhäuser Verlag. Basel, Boston, Berlin, 2002, 384p.