Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
Quark Star Model with Charge Distributions
Current Issue
Volume 1, 2014
Issue 1 (March)
Pages: 6-11   |   Vol. 1, No. 1, March 2014   |   Follow on         
Paper in PDF Downloads: 21   Since Aug. 28, 2015 Views: 1650   Since Aug. 28, 2015
Authors
[1]
Manuel Malaver , Departamento de Ciencias Básicas, Universidad Marítima del Caribe, Catia la Mar, Venezuela.
Abstract
In this paper, we studied the behavior of relativistic objects with anisotropic matter distribution in the presence of an electric field considering a gravitational potential Z(x) of Thirukkanesh and Ragel (2013) which depends on an adjustable parameter n. The equation of state presents a quadratic relation between the energy density and the radial pressure. New exact solutions of the Einstein-Maxwell system are generated. A physical analysis of electromagnetic field indicates that is regular in the origin and well behaved. We show as a variation of the adjustable parameter n causes a modification in the charge density, the radial pressure and the mass of the stellar object.
Keywords
Relativistic Objects, Electric Field, Gravitational Potential, Adjustable Parameter, Einstein-Maxwell System, Charge Density
Reference
[1]
Kuhfitting, P.K.(2011). Some remarks on exact wormhole solutions, Adv. Stud. Theor. Phys., 5, 365- 367 .
[2]
Bicak, J.(2006). Einstein equations: exact solutions, Encyclopedia of Mathematical Physics, 2, 165-173.
[3]
Malaver, M. (2013). Black Holes, Wormholes and Dark Energy Stars in General Relativity. Lambert Academic Publishing, Berlin. ISBN: 978-3-659-34784-9.
[4]
Komathiraj, K., and Maharaj,S.D. (2008). Classes of exact Einstein-Maxwell solutions, Gen. Rel. Grav., 39, 2079-2093.
[5]
Sharma, R., Mukherjee, S and Maharaj, S.D.(2001). General solution for a class of static charged stars, Gen.Rel. Grav., 33, 999-110.
[6]
Schwarzschild, K. (1916). Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit, Math. Phys. Tech, 424-434.
[7]
Tolman, R.C. (1939). Static Solutions of Einstein's Field Equations for Spheres of Fluid, Phys. Rev., 55, 364-373.
[8]
Oppenheimer, J.R. and Volkoff, G. (1939). On massive neutron cores, Phys. Rev., 55, 374-381.
[9]
Chandrasekhar, S. (1931). Mass of Ideal White Dwarfs, Astrophys. J., 74, 81-82.
[10]
Baade, W., and Zwicky, F. (1934). Cosmic Rays from Super-Novae, Proc. Nat. Acad. Sci. U. S., (20), 259-263.
[11]
Komathiraj, K., and Maharaj, S.D.(2007). Analytical models for quark stars, Int. J. Mod. Phys., D16, pp. 1803-1811.
[12]
Herrera, L., and Santos, N.O. (1997), Phys. Rep.286, 53.
[13]
Cosenza, M., Herrera, L., Esculpi, M. and Witten, L.(1981), J. Math. Phys., 22(1), 118.
[14]
Gokhroo, M.K., and Mehra. A.L. (1994). Anisotropic spheres with variable energy density in general relativity, Gen. Relat. Grav., 26(1), 75-84.
[15]
Herrera, L. (1992), Phys. Lett., A165, 206.
[16]
Sokolov. A.I. (1980), Sov. Phys. JETP., 52, 575.
[17]
Herrera, L., Ruggeri, G.J and Witten. L. (1979), Astrophys. J., 234, 1094.
[18]
Herrera, L., and Ponce de Leon. J. (1985), J. Math. Phys., 26, 2018.
[19]
Herrera, L., and Santos. N.O. (1998), J. Math. Phys., 39, 3817.
[20]
Bondi.H.(1992), Mon. Not. R. Astron. Soc., 259, 365.
[21]
Komathiraj, K., and Maharaj,S.D. (2008). Classes of exact Einstein-Maxwell solutions, Gen. Rel.Grav., 39, 2079-2093.
[22]
Malaver, M. (2009). Análisis comparativo de algunos modelos analíticos para estrellas de quarks, Revista Integración, 27, 125-133.
[23]
Thirukkanesh, S., and Maharaj, S.D. (2008). Charged anisotropic matter with linear equation of state, Class. Quantum Gravity, 25, 235001.
[24]
Thirukkanesh, S., and Ragel, F.C. (2013). A class of exact strange quark star model,
[25]
PRAMANA-Journal of physics, 81(2), 275-286.
[26]
Feroze, T.. and Siddiqui, A. (2011). Charged anisotropic matter with quadratic equation of state, Gen. Rel. Grav., 43, 1025-1035.
[27]
Malaver, M. (2014). Strange Quark Star Model with Quadratic Equation of State, Frontiers of Mathematics and Its Applications., 1(1), 9-15.
[28]
Takisa, P.M., and Maharaj, S.D. (2013). Some charged polytropic models, Gen. Rel. Grav., 45, 1951-1969.
[29]
Thirukkanesh, S., and Ragel, F.C. (2012). Exact anisotropic sphere with polytropic equation of state, PRAMANA-Journal of physics, 78(5), 687-696.
[30]
Malaver, M. (2013). Analytical model for charged polytropic stars with Van der Waals Modified Equation of State, American Journal of Astronomy and Astrophysics, 1(4), 41-46.
[31]
Malaver, M. (2013). Regular model for a quark star with Van der Waals modified equation of state World Applied Programming., 3, 309-313.
[32]
Mak, M.K., and Harko, T. (2004). Quark stars admitting a one-parameter group of conformal motions, Int. J. Mod. Phys, D13, 149-156.
[33]
Durgapal, M.C., and Bannerji, R. (1983). New analytical stellar model in general relativity, Phys. Rev. D27, 328-331.
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
CONTACT US
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
E-mail:
LET'S GET IN TOUCH
Name
E-mail
Subject
Message
SEND MASSAGE
Copyright © 2013-, Open Science Publishers - All Rights Reserved