Enthalpy of Vaporization of Fluid Alkali Metals at High Temperatures
[1]
Balasubramanian Ramasamy, Department of Physics, Arignar Anna Government Arts College, Namakkal, India.
[2]
Kowsarbanu Abdul Jaffar, Department of Physics, Arignar Anna Government Arts College, Namakkal, India.
[3]
Ramesh Arumugam, Department of Physics, Arignar Anna Government Arts College, Namakkal, India.
Alkali metals are typical metals. Hence, the study of their thermodynamic properties has scientific significance. On the other hand, the technological applications such as coolant systems for fast- neutron breeder nuclear reactors and magnetohydrodynamic energy conversion systems employ fluid alkali metals. This fact underscores the technological significance of the study of the thermodynamic properties of fluid alkali metals. In fact, the knowledge of the thermodynamic properties of alkali metals is essential in the design of several industrial processes and for the description of a variety of thermodynamic phenomena. Statistical mechanics and thermodynamics provide several approaches for the study of thermodynamic properties of substances. One of the commonly employed approaches is the development of accurate equations of state for substances. The known two-parameter van der Waals equation of state does not precisely describe the thermodynamic properties of fluid alkali metals. To improve its accuracy, a third parameter is introduced in the expression for the molecular pressure of the van der Waals equation of state. The newly introduced substance-specific parameter is determined through experimental data on the vapor-liquid critical-point parameters and it is found to be a thermodynamic similarity parameter for alkali metals. The three-parameter generalized van der Waals equation of state satisfactorily describes thermodynamic properties of fluid alkali metals in a wide range of temperatures from the boiling point to the critical point. Therefore, the three-parameter generalized van der Waals equation of state may be employed to determine the enthalpy of vaporization of fluid alkali metals in the range of temperatures from the boiling point to the critical point. The knowledge of the enthalpy of vaporization is essential in the study of liquid-vapor phase transition and the surface tension of fluid alkali metals. However, the experimental determination of the enthalpy of vaporization of fluid alkali metals, particularly at high temperatures, encounters severe difficulties due to the fact that the alkali metals are highly reactive at high temperatures. Hence arises the necessity for theoretical study of the enthalpy of vaporization of fluid alkali metals. In this work, the enthalpy of vaporization of fluid alkali metals, in the range of temperatures from the boiling point to the critical point, has been determined through the three-parameter generalized van der Waals equation of state. At high temperatures, the values of the enthalpy of vaporization of fluid alkali metals yielded by the three-parameter generalized van der Waals equation of state agree well with those given by Carruth and Kobayashi correlation (CK), Fish and Liemezs correlation (FL) and Watson correlation.
Alkali Metals, Enthalpy of Vaporization, Equation of State, Law of Corresponding States, Thermodynamic Similarity
[1]
A. A. Likal'ter, H. Schneidenbach, Physica A, 293, 3-4 (2000).
[2]
M. H. Ghatee, M. Bahadori, J. Phys. Chem. B, 105, 11256 (2001).
[3]
W. C, Pilgrim, S. Hosokawa, C. Morkel, Contrib. Plasma Phys., 41, 283 (2001).
[4]
H. Eslami, S. Sheikh, A. Boushehri, High Temp.-High Press, 33, 237 (2001).
[5]
H. Eslami, S. Sheikh, A. Boushehri, High Temp.-High Press, 33, 725 (2001).
[6]
A. A. Likal'ter, H. Hess, Schneidenbach, Phys. Scripta, 66, 89 (2002).
[7]
F. Hensel, W. C. Pilgrim, Contrib. Plasma Phys., 43, 306 (2003).
[8]
L. Maftoon-Azad, A. Boushehri, Int. J. Thermophysics, 25, 893 (2004).
[9]
V. Rogankov, T. Bedrova, VisnykLviv Univ. Ser. Physics, 38, 197 (2005).
[10]
E. K. Goharshadi, A. R. Boushehri, J. Nucl. Mat., 348, 40 (2006).
[11]
K. Matsuda, M. Inui, K. Tamura, Sci, Techn. Adv. Mat., 7, 483 (2006).
[12]
F. Mozaffari, H. Eslami, A. Boushehri, Int. J. Thermophys., 28, 1 (2006).
[13]
O. M. Krasilnikow, FizikaMetalov I Metalovedenie, 103, 306 (2007).
[14]
O. D. Zhakhrova, A. M. Semenov, Teplofiz. Vys. Temp., 46, 59 (2008).
[15]
L Maftoon-Azad, H. Eslami, A. Boushehri, Fluid Phase Equilbria, 263, 1 (2008).
[16]
G. G. N. Angilella, N. H. March, R. Pucci, Phys. Chem. Liq., 46, 86 (2008).
[17]
LA. Blagonravov, Teplofiz. Vys Temp., 46, 680 (2009).
[18]
N. Farzi, R. Srfari, F. Kermanpour, J. Mol Liq., 137, 159 (2009).
[19]
D. N. Kagan, G. A. Krechetova, E. E. Shpil'rain, HighTemp., 48, 506-510 (2010).
[20]
V. A. Krashaninin, A. A. Yur'ev, E. A. Yur'ev, Russian Metallurgy, 2011, 709-714 (2011).
[21]
N. E. Dubinin, A. A. Yurgev, N. A. Vatolin, J. of Structural Chem., 53, 468-475 (2012).
[22]
V. A. Krashaninin, N. E. Dubinin, N. A. Vatolin, Doklady Phys., 58, 339-342 (2013).
[23]
V. I. Rachkov, M. N. Amol'dov, A. D. Efanov, S. G. Kalyakin, F. A. Kozlov, N. I. Loginov, Yu. I. Orlov, A. P. Sorokin, Thermal Engineering, 61, 337-347 (2014).
[24]
D. K. Belashchenko, Russian J. of Physics chem. A, 89, 2051 – 2063 (2015).
[25]
A. V. Mokshin, R. M. Khusnutdinow, A. R. Akhmerova, A. R. Musabirova, JETP Letters, 106, 366-370 (2017).
[26]
V. A. Krashaninin, N. E. Dubinin, Academician N. A. Vatolin, Doklady Phys., 58, 339-342 (2013).
[27]
Zhanjiang, PR. China, J. of Material Science & Engineering, 6, 349 (2017).
[28]
Annette Heinzel, WolfagangHering, Jurgen Konys, Luca Marocco, Karsten Litfin, Georg Muller, Julio Pacio, arsten Schroer, Robert Stieglitz, Leonid Stoppel, AlfonsWeisenburger, ThomasWetzel, Energy Technology, 5, 1026-1036 (2017).
[29]
Rajesh C. Malan, Aditya M. Vora, J. of Nano – and Electronic Physics, 10, 1-4 (2018).
[30]
M. M. Martynyuk, R. Balasubramanian, Int. J. Thermophys., 16 (2), 533–543 (1995).
[31]
R. Balasubramanian, High Temp.-High Press, 34, 335 (2002).
[32]
R. Balasubramanian, Int. J. Thermophys., 24, 201-206 (2003).
[33]
R. Balasubramanian, J. Chem., Eng. Jpn., 37, 1415 (2004).
[34]
R. Balasubramanian, Physica B, 381, 128 (2006).
[35]
R. Balasubramanian, Int. J. Thermophys., 27, 1494-1500 (2006).
[36]
R. Balasubramanian, J. Nucl. Mat., 366, 272 (2007).
[37]
R. Balasubramanian, Asia-Pacific J. Chem. Eng., 3, 90 (2008).
[38]
R. Balasubramanian, J. of Molecular Liquids, 151, 130-133 (2010).
[39]
R. Balasubramanian, ThermochimicaActa, 566, 233-237 (2013).
[40]
Mario N. Berberan-Santos, Evgeny N. Bodunov, LionelloPogliani, J. of Mat. Chem., 43, 4 (2008).
[41]
M. Christoforakos, E. U. Franck, Ber. Bunsen-Ges, Phys. Chem., 90, 780 (1986).
[42]
R. Balasubramanian, Ph.D Thesis, RussianPeoples'Friendship University, Moscow, Russia (1993).
[43]
G. F. Carruth, R. Kobayashi, Ind. Eng. Chem. Fundam., 11, 509 (1972).
[44]
L. W. Fish, J. Lielmezs, Ind. Eng. Chem. Fundam., 14, 248 (1975).
[45]
K. M Watson, Ind. Eng. Chem., 35, 398 (1943).