Ab-Initio calculation at the Tight Binding modified Beck Johnson TB-mBJ-GGA level were performed in order to study the Ferromagnetic (FM) behaviour on TiFeF3 and TlFeF3 Fluorides with cubic perovskite structure ABF3 in comparison with the GGA+U approache based on DFT+U description. U: Hubbard Hamiltonian is On-Site Coulomb interaction correction. The stability of ferromagnetic (FM) ordering and disordered magnetic moment configurations has been explored. Structure parameters, bulk modulus, and its pressure derivative theoretically investigated at the Ab-Initio level using a plane wave basis set WC-GGA, PBE –GGA, PBEsol –GGA, and PBE-GGA+U to treat exchange correlation function. Electonic states and magnetic properties are given within GGA+U and TB-mBJ-GGA approaches. Our results agree very well with the theoretical and experimental works.
Fluorides, DFT+U Description, GGA+U, TB-mBJ-GGA, Magnetic Moment
[1]
F. Pan, C. Song, X. J. Liu, Y. C. Yang, F. Zeng, Materials Science and Engineering: R: Reports, 62, 1, (2008).
[2]
S. Chattopadhyay, T. K. Nath, Current Applied Physics, 11, 1153, (2011).
[3]
I. B. Bersuker, Phys. Rev. Lett. 108, 137202, (2012).
[4]
V. Polinger, P. Garcia-Fernandez, I. B. Bersuker, Physica B 457, 296, (2015).
[5]
Avinash Daga, Smita Sharma, J. Modern Physics, 3, 1891, (2012).
[6]
Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. G. Bednorz and F. Lichtenberg, Nature, 372, 532, (1994).
[7]
T. Takimoto, T. Hotta, T. Maehira and K. Ueda, J. Phys. Cond. Matt., 14, L369, (2002).
[8]
Y. S. Lee, J. S. Lee, K. W. Kim, T. W. Noh, J. Yu, Y. Bang, M. K. Lee and C. B. Eom, Phys. Rev. B 64, 165109, (2001).
[9]
J. S. Lee, Y. S. Lee, K. W. Kim, T. W. Noh, K. Char, J. Park, S. J. Oh, J. H. Park, C. B. Eom, T. Takeda and R. Kanno, Phys. Rev. B64, 245107, (2001).
[10]
T. Katsufuji, H. Y. Hwang and S. W. Cheong, Phys. Rev. Lett., 84, 1998, (2000).
[11]
Daniel Burkitt, Justin Searle and Trystan Watson, R. Soc. Open sci. 5, 172158, (2018).
[12]
Sameh Megdiche Borchani,, Wissem Cheikh-Rouhou Koubaa, and Makrem Megdiche, R. Soc. open sci. 4, 170920, (2017).
[13]
E D Indari,, T D K Wungu,, and R Hidayat, IOP Conf. Series: Journal of Physics: Conf. Series 877, 012054, (2017).
[14]
Sajad Ahmad Dar, Vipul Srivastava, Umesh Kumar Sakalle, Journal of Electronic Materials, 46, 6870, (2017).
[15]
akita, Y. et al. MRS Communications 5, 623, (2015).
[16]
Körbel, S., Marques, M. A. & Botti, S. Journal of Materials Chemistry C4, 3157, (2016).
[17]
Yin, W. J., Shi, T. & Yan, Y. Advanced Materials 26, 4653, (2014).
[18]
Zhang, W., Eperon, G. E. & Snaith, H. J.. Nature Energy 1, 16048, (2016).
[19]
Ramasamy, P. et al. Chemical communications 52, 2067, (2016).
[20]
Steele, B. C. H., Survey of materials selection for ceramic fuel cells. 2. Cathodes and anodes. Solid State Ionics, 86, 1223, (1996).
[21]
Adler, S. B., Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chemical Reviews, 104, 4791, (2004).
[22]
Noura Hamdad, Physica B 406, 1194, (2011).
[23]
Labdelli Abbes, Hamdad Noura, Results in Physics, 5, 38, (2015).
[24]
T. H. Lin, H. C. Shih, C. C. Hsieh, C. W. Luo, J.-Y. Lin, J. L. Her, H. D. Yang, C.-H. Hsu, K. H. Wu, T. M. Uen, J. Y. Juang, J. Phys.: Condens. Matter 21, 026013, (2009).
[25]
R. Schmidt, W. Eerenstein, P. A. Midgley, Phys. Rev. B 79, 214107, (2009).
[26]
A. Moreira dos Santos, A. K. Cheetham, T. Atou, Y. Shono, Y. Yamaguchi, K. Ohoyama, H. Chiba, C. N. R. Rao, Phys. Rev. B 66, 064425, (2002).
[27]
T. Shishidou, N. Mikamo, Y. Uratani, F. Ishii, T. Oguchi, J. Phys.: Condens. Matter 16, S5677, (2004).
[28]
K. Ephraim Babu, A. Veeraiah, D. Tirupati Swamy, V. Veeraiah, Chin. Phys. Lett. 29, 117102, (2012).
[29]
M. W. Davidson, G. F. Lofgren, J. Geol. Educ. 39, 403, (1991).
[30]
SHAFER M. W. and McGUIRE T. R., 133rd Meeting Electrochemical Society, Extended abstracts. Boston (1968).
[31]
M. W. Shefer and T. R. McGuire, J. Phys. Chem. Solids Pergamon Press 30, 1989, (1969).
[32]
J. L. Sommerdijkand A. Bril, J. Luminescence 11, 363, (1976).
[33]
L. W. Ludekens and A. J. E. Welch, Acta Cryst. 5, 841, (1952).
[34]
H. A. Klasens, P. ZaIm and F. O. Huysman, Philips Res. Rep. 8, 441 (1953).
[35]
C. Dotzler, G. V. M. Williams, A. Edgar, Curr. Appl. Phys. 8, 447, (2008).
[36]
A. A. Mubarak, Comp. Mat. Scie. 81, 478, (2014).
[37]
T. Nishimatsu, N. Terakubo, H. Mizuseki, Y. Kawazoe, D. A. Pawlak, K. Shimamuri, T. Fukuda, Jpn. J. Appl. Phys. 41, 365, (2002).
[38]
Masaki Akaogi, Yuichi Shirako, Hiroshi Kojitani, Takayuki Nagakari, Hitoshi Yusa, Kazunari Yamaura, Physics of the Earth and Planetary Interiors, 228, 160, (2014).
[39]
Li-Li Li, Shao-Yi Wu, Min-Quan Kuang, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79, 82, (2011).
[40]
Y. Emül, D. Erbahar, M. Açıkgöz, Chem. Phys., 444, 52, (2014).
[41]
M. M. J. Portier, A. Tressaud, J-L. Dupin and R. de Pape, Mat. Res. Bull. 4, 45, (1969).
[42]
R. D. Shannon, and Pauls. Gumerman, J. inorg., ucl. Chem., 38, 699, (1776).
[43]
W. Kohn and L. J. Sham, Phys. Rev, 140, 1133 (1965).
[44]
P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864, (1964).
[45]
W. Kohn and L. J. Sham, Phys. Rev. 137, A1697, (1965).
[46]
P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, Vienna, Austria, (2018).
[47]
J. P. Perdew, Y. Wang, Phys. Rev. 45, 13244, (1992).
[48]
Tran F, Blaha P. Phys Rev Lett 102, 226401, (2009).
[49]
Ceperly DM, Alder BJ. Phys Rev Lett B 23, 5048, (1980).
[50]
Perdew JP, Zunger A. Phys Rev B 23, 5048, (1981).
[51]
J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048, (1981).
[52]
J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pedreson, D. J. Singh and C. Fiolhais, Phys. Rev. B 43, 6671, (1992).
[53]
J. P. Perdew, S. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865, (1996).
[54]
J. P. Perdew and Y. Wang, Phys. Rev. B 33, 8800 (1986).
[55]
J. P. Perdew in ‘Electronic Structure of Solids’, Academie Verlag, Berlin, 91, 11, (1991).
[56]
J. P. Perdew and K. Burke, Int. J. Quantum Chem. 57, 309, (1996).
[57]
P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka and J. Luitz, WIEN2k, K. Schwarz, Techn. University at Wien, Austria, 3, 9501031, (2001).
[58]
A. D. Becke and E. R. Johnson, J. Chem. Phys. 124, 221101, (2006).
[59]
Fabien Tran and Peter Blaha, Phys. Rev. Lett. 102, 226401, (2009).
[60]
Becke AD, Johnson ER. J Chem Phys, 124, 221101, (2006).
[61]
Emil Proynov, Zhenting Gan, Jing Kong, Chem. Phys. Lett. 455, 103, (2008).
[62]
H. J. Monkhorst, J. D. Pack, Phys. Rev. B 13, 5192, (1976).
[63]
M. A. Pena and J. L. G. Fierro, Chem. Rev. 101, 1981, (2001).
[64]
Raveau, B. Proc. Indian Natl. Sci. Acad. Part A, 52, 67, (1986).
[65]
Raham Zeb, Zahid Ali, Iftikhar Ahmad, Imad Khan, Journal of Magnetism and Magnetic Materials 388, 143 (2015).
[66]
F. D. Murnaghan, Proc. Natl. Acad. Sci. USA, 30, 5390 (1944).
[67]
M. M. J. Portier, A. Tressaud, J. L. Dupir, Phys. Rev. 4 (1968).
[68]
Y. Tomioka, Y. Okimoto, J. H. Jung, R. Kumai, Y. Tokura, Phase diagrams of perovskite-type manganese oxides, J. Phys. Chem. Solids 67, 2214, (2006).
[69]
Roberto L. Moreira, and Anderson Dias, Journal of Physics and Chemistry of Solids 68, 1617 (2007).
[70]
L. Q. Jiang, J. K. Guo, H. B. Liu, M. Zhu, X. Zhou, P. Wu, C. H. Li, Journal of Physics and Chemistry of Solids 67, 1531 (2006).
[71]
O. Muller, R. Roy, The Major Ternary Structural Families, Springer, NewYork-Heidelberg-Berlin, (1974).