Charged Anisotropic Matter with Modified Tolman IV Potential
[1]
Manuel Malaver, Department of Basic Sciences, Maritime University of the Caribbean, Catia la Mar, Venezuela.
In this paper, we studied the behavior of relativistic objects with charged anisotropic matter distribution within the framework of MIT-Bag Model considering modified Tolman IV form for the gravitational potential Zwhich depends on an adjustable parameter n.New exact solutions of the Einstein-Maxwell system are generated. A physical analysis of electromagnetic field indicates that is regular in the origin and well behaved. We show as a variation of the adjustable parameter causes a modification in the charge density, the radial pressure, the tangential pressure and the mass of the stellar object.
Relativistic Objects, Anisotropic Matter, MIT–Bag Model, Electromagnetic Field, Tolman IV Potential, Adjustable Parameter, Einstein-Maxwell System
[1]
Kuhfitting, P.K.(2011). Some remarks on exact wormhole solutions, Adv. Stud.Theor.Phys., 5, 365- 367 .
[2]
Bicak, J.(2006). Einstein equations: exact solutions, Encyclopedia of MathematicalPhysics, 2, 165-173.
[3]
Malaver, M. (2013). Black Holes, Wormholes and Dark Energy Stars in GeneralRelativity. Lambert Academic Publishing, Berlin. ISBN: 978-3-659-34784-9.
[4]
Komathiraj, K., and Maharaj,S.D. (2008). Classes of exact Einstein-Maxwellsolutions, Gen. Rel.Grav., 39, 2079-2093.
[5]
Sharma, R., Mukherjee, S and Maharaj, S.D.(2001). General solution for a class ofstatic charged stars, Gen.Rel. Grav., 33, 999-110.
[6]
Bowers, R. L., Liang, E. P. T.: Astrophys. J., 188, 657 (1974).
[7]
Cosenza, M., Herrera, L., Esculpi, M.and Witten, L.(1981), J.Math.Phys., 22(1),118.
[8]
Gokhroo, M.K., and Mehra. A.L. (1994). Anisotropic spheres with variable energy density in general relativity,Gen.Relat.Grav., 26(1), 75-84.
[9]
Sokolov. A.I. (1980), Sov. Phys.JETP., 52, 575
[10]
Usov, V. V.: Phys. Rev. D, 70, 067301 (2004).
[11]
Komathiraj, K., and Maharaj, S.D.(2007). Analytical models for quark stars,Int.J.Mod. Phys., D16, pp. 1803-1811.
[12]
Malaver, M. (2009). Análisis comparativo de algunos modelos analíticos paraestrellas de quarks, Revista Integración, 27, 125-133.
[13]
Malaver, M. AASCIT Communications, 1,48-51 (2014).
[14]
Thirukkanesh, S., and Maharaj, S.D. (2008). Charged anisotropic matter with linearequation of state,Class. Quantum Gravity, 25, 235001.
[15]
Maharaj, S.D., Sunzu, J.M. and Ray, S. (2014). Eur. Phys. J.Plus., 129, 3.
[16]
Thirukkanesh, S., and Ragel, F.C. (2013).A class of exact strange quark star model,PRAMANA-Journal of physics, 81(2), 275-286.
[17]
Sunzu, J.M, Maharaj, S.D and Ray, S.(2014). Astrophysics. Space. Sci. 354,517-524
[18]
Feroze, T..andSiddiqui, A. (2011). Charged anisotropic matter with quadraticequation of state, Gen. Rel. Grav., 43, 1025-1035.
[19]
Feroze, T,.andSiddiqui, A. (2014). Some exact solutions of the Einstein-Maxwellequations with a quadratic equation of state, Journal of the Korean PhysicalSociety, 65(6), 944-947.
[20]
Malaver, M. (2014). Strange Quark Star Model with Quadratic Equation of State,Frontiers of Mathematics and Its Applications., 1(1), 9-15.
[21]
Malaver, M.(2015). Relativistic Modeling of Quark Stars with Tolman IV Type Potential, International Journal ofModern Physics and Application.,2(1), 1-6.
[22]
Takisa, P.M., and Maharaj, S.D. (2013). Some charged polytropic models, Gen.Rel.Grav., 45, 1951-1969.
[23]
Thirukkanesh, S., and Ragel, F. C. (2012). Exact anisotropic sphere with polytropic equation of state, PRAMANA-Journal of physics, 78(5), 687-696.
[24]
Malaver, M. (2013). Analytical model for charged polytropic stars with Van der Waals Modified Equation of State, American Journal of Astronomy and Astrophysics, 1(4), 41-46.
[25]
Malaver, M. (2013). Regular model for a quark star with Van der Waals modified equation of state, World Applied Programming., 3, 309-313.
[26]
Thirukkanesh, S., and Ragel, F.C. (2014).Strange star model with Tolmann IV type potential, Astrophysics and Space Science, 352(2), 743-749.
[27]
Mak, M.K., and Harko, T. (2004). Quark stars admitting a one-parameter group of conformal motions, Int.J.Mod.Phys, D13, 149-156.
[28]
Durgapal, M.C., and Bannerji, R. (1983). New analytical stellar model in general relativity, Phys.Rev. D27, 328-331.
[29]
Tolman, R.C. (1939). Static Solutions of Einstein's Field Equations for Spheres of Fluid, Phys. Rev., 55, 364-373.