Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
Charged Anisotropic Matter with Modified Tolman IV Potential
Current Issue
Volume 2, 2015
Issue 5 (September)
Pages: 65-71   |   Vol. 2, No. 5, September 2015   |   Follow on         
Paper in PDF Downloads: 35   Since Aug. 28, 2015 Views: 1788   Since Aug. 28, 2015
Authors
[1]
Manuel Malaver, Department of Basic Sciences, Maritime University of the Caribbean, Catia la Mar, Venezuela.
Abstract
In this paper, we studied the behavior of relativistic objects with charged anisotropic matter distribution within the framework of MIT-Bag Model considering modified Tolman IV form for the gravitational potential Zwhich depends on an adjustable parameter n.New exact solutions of the Einstein-Maxwell system are generated. A physical analysis of electromagnetic field indicates that is regular in the origin and well behaved. We show as a variation of the adjustable parameter causes a modification in the charge density, the radial pressure, the tangential pressure and the mass of the stellar object.
Keywords
Relativistic Objects, Anisotropic Matter, MIT–Bag Model, Electromagnetic Field, Tolman IV Potential, Adjustable Parameter, Einstein-Maxwell System
Reference
[1]
Kuhfitting, P.K.(2011). Some remarks on exact wormhole solutions, Adv. Stud.Theor.Phys., 5, 365- 367 .
[2]
Bicak, J.(2006). Einstein equations: exact solutions, Encyclopedia of MathematicalPhysics, 2, 165-173.
[3]
Malaver, M. (2013). Black Holes, Wormholes and Dark Energy Stars in GeneralRelativity. Lambert Academic Publishing, Berlin. ISBN: 978-3-659-34784-9.
[4]
Komathiraj, K., and Maharaj,S.D. (2008). Classes of exact Einstein-Maxwellsolutions, Gen. Rel.Grav., 39, 2079-2093.
[5]
Sharma, R., Mukherjee, S and Maharaj, S.D.(2001). General solution for a class ofstatic charged stars, Gen.Rel. Grav., 33, 999-110.
[6]
Bowers, R. L., Liang, E. P. T.: Astrophys. J., 188, 657 (1974).
[7]
Cosenza, M., Herrera, L., Esculpi, M.and Witten, L.(1981), J.Math.Phys., 22(1),118.
[8]
Gokhroo, M.K., and Mehra. A.L. (1994). Anisotropic spheres with variable energy density in general relativity,Gen.Relat.Grav., 26(1), 75-84.
[9]
Sokolov. A.I. (1980), Sov. Phys.JETP., 52, 575
[10]
Usov, V. V.: Phys. Rev. D, 70, 067301 (2004).
[11]
Komathiraj, K., and Maharaj, S.D.(2007). Analytical models for quark stars,Int.J.Mod. Phys., D16, pp. 1803-1811.
[12]
Malaver, M. (2009). Análisis comparativo de algunos modelos analíticos paraestrellas de quarks, Revista Integración, 27, 125-133.
[13]
Malaver, M. AASCIT Communications, 1,48-51 (2014).
[14]
Thirukkanesh, S., and Maharaj, S.D. (2008). Charged anisotropic matter with linearequation of state,Class. Quantum Gravity, 25, 235001.
[15]
Maharaj, S.D., Sunzu, J.M. and Ray, S. (2014). Eur. Phys. J.Plus., 129, 3.
[16]
Thirukkanesh, S., and Ragel, F.C. (2013).A class of exact strange quark star model,PRAMANA-Journal of physics, 81(2), 275-286.
[17]
Sunzu, J.M, Maharaj, S.D and Ray, S.(2014). Astrophysics. Space. Sci. 354,517-524
[18]
Feroze, T..andSiddiqui, A. (2011). Charged anisotropic matter with quadraticequation of state, Gen. Rel. Grav., 43, 1025-1035.
[19]
Feroze, T,.andSiddiqui, A. (2014). Some exact solutions of the Einstein-Maxwellequations with a quadratic equation of state, Journal of the Korean PhysicalSociety, 65(6), 944-947.
[20]
Malaver, M. (2014). Strange Quark Star Model with Quadratic Equation of State,Frontiers of Mathematics and Its Applications., 1(1), 9-15.
[21]
Malaver, M.(2015). Relativistic Modeling of Quark Stars with Tolman IV Type Potential, International Journal ofModern Physics and Application.,2(1), 1-6.
[22]
Takisa, P.M., and Maharaj, S.D. (2013). Some charged polytropic models, Gen.Rel.Grav., 45, 1951-1969.
[23]
Thirukkanesh, S., and Ragel, F. C. (2012). Exact anisotropic sphere with polytropic equation of state, PRAMANA-Journal of physics, 78(5), 687-696.
[24]
Malaver, M. (2013). Analytical model for charged polytropic stars with Van der Waals Modified Equation of State, American Journal of Astronomy and Astrophysics, 1(4), 41-46.
[25]
Malaver, M. (2013). Regular model for a quark star with Van der Waals modified equation of state, World Applied Programming., 3, 309-313.
[26]
Thirukkanesh, S., and Ragel, F.C. (2014).Strange star model with Tolmann IV type potential, Astrophysics and Space Science, 352(2), 743-749.
[27]
Mak, M.K., and Harko, T. (2004). Quark stars admitting a one-parameter group of conformal motions, Int.J.Mod.Phys, D13, 149-156.
[28]
Durgapal, M.C., and Bannerji, R. (1983). New analytical stellar model in general relativity, Phys.Rev. D27, 328-331.
[29]
Tolman, R.C. (1939). Static Solutions of Einstein's Field Equations for Spheres of Fluid, Phys. Rev., 55, 364-373.
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
CONTACT US
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
E-mail:
LET'S GET IN TOUCH
Name
E-mail
Subject
Message
SEND MASSAGE
Copyright © 2013-, Open Science Publishers - All Rights Reserved