To Confirm the Existence of Nuclear Gravitational Constant
[1]
U. V. S. Seshavatharam, Science Division, I-SERVE, Alakapuri, Telangana, India.
[2]
S. Lakshminarayana, Department of Nuclear Physics, Andhra University, Visakhapatnam, India.
In final unification program, it is certainly possible to introduce a new gravitational constant associated with strong interaction. In this context, the authors proposed many interesting and accurate semi empirical relations. With reference to the recommend value of the strong coupling constant of magnitude, 0.1185 - magnitude of the proposed nuclear gravitational constant is very close to 3.282782861x1028 m3/kg/sec2 and magnitude of the gravitational constant is very close to 6.673965507x10-11m3/kg/sec2.
Schwarzschild’s Interaction, Gravitational Constant Associated with Strong Interaction, Strong Coupling Constant, Nuclear Structure
[1]
G. J. Stoney, On the Physical Units of Nature. Phil.Mag. 11 381-390. (1881)
[2]
P. A. M. Dirac, The cosmological constants. Nature, 139, 323, (1937).
[3]
Witten, Edward. Search for a realistic Kaluza-Klein theory. Nuclear Physics B 186 (3): 412- 428. (1981).
[4]
David Gross, Einstein and the search for Unification. Current science, Vol. 89, No. p 12. (2005).
[5]
Abdus Salam. Einstein’s Last Dream: The Space -Time Unification of Fundamental Forces, Physics News, 12(2):36, (1981).
[6]
Salam A. and Sivaram C. Strong Gravity Approach to QCD and Confinement. Mod. Phys. Lett., v. A8(4), 321-326. (1993).
[7]
Recami E. Elementary Particles as Micro-Universes, and “Strong Black-holes”: A Bi-Scale Approach to Gravitational and Strong Interactions. Preprint NSF-ITP-02-94. posted in the arXives as the e-print physics/0505149, and references therein.
[8]
Dine, Michael. Supersymmetry and String Theory: Beyond the Standard Model. Cambridge University Press. (2007).
[9]
Roberto Onofrio. On Weak Interactions as Short-Distance Manifestations of Gravity. Modern Physics Letters A, Vol. 28, No. 7 (2013) 1350022.
[10]
U. V. S. Seshavatharam, Lakshminarayana S. Final unification with Schwarzschild’s Interaction. Journal of Applied Physical Science International 3(1): 12-22, 2015.
[11]
U. V. S. Seshavatharam, and S. Lakshminarayana, Gravity Based Integral Charge Quark and Higgs Super Symmetry. Frontiers of Astronomy, Astrophysics and Cosmology, vol. 1, no. 2 (2015): 74-89.
[12]
U. V. S. Seshavatharam and S. Lakshminarayana. On fixing the magnitudes of gravitational constant and strong coupling constant. International Journal of Advanced Astronomy, 3 (1) 17-23, (2015).
[13]
U. V. S. Seshavatharam and S. Lakshminarayana. On the Role of Up & Down Quarks in Understanding Nuclear Binding Energy. (Part I) and (Part II)). Prespacetime Journal, Volume 6, Issue 2, pp. 120-142. (2015).
[14]
U. V. S. Seshavatharam and S. Lakshminarayana. On the role of RMS radius of proton in under-standing nuclear binding energy. Journal of Applied Physical Science International, Vol.: 2, Issue. 3, p84-100. (2015).
[15]
Seshavatharam, U. V. S. & Lakshminarayana, S., On the Ratio of Nuclear Binding Energy & Protons Kinetic Energy. Prespacetime Journal, Volume 6, Issue 3, pp. 247-255 (2015).
[16]
U. V. S. Seshavatharam, and S. Lakshminarayana, On the Role of Schwarzschild Interaction in Understanding Strong Interaction and Nuclear Binding Energy. Frontiers of Astronomy, Astrophysics and Cosmology, vol. 1, no. 1: 43-55. (2015).
[17]
U. V. S. Seshavatharam and S. Lakshminarayana, To confirm the existence of atomic gravitational constant. Hadronic journal, Vol-34, No 4, p 379 (2011).
[18]
Roger Penrose. Chandrasekhar, Black Holes, and Singularities. J. Astrophys. Astr. (1996) 17, 213-231.
[19]
Subrahmanyan Chandrasekhar. On Stars, Their Evolution and Their Stability. Nobel Prize lecture, December 8, 1983.
[20]
U. V. S. Seshavatharam, Lakshminarayana S. Understanding Nuclear Structure With Final unification. Journal of Applied Physical Science International. Vol 4, Issue 4, pp.191-205 (2015).
[21]
U. V. S. Seshavatharam, Lakshminarayana S. Strong Nuclear Gravitational Constant and the Origin of Nuclear Planck Scale. Progress in Physics. Vol 3, pp.31-38, (July 2010).
[22]
P. J. Mohr, B. N. Taylor, and D.B. Newell. CODATA Recommended Values of the Fundamental Physical Constants: 2010” by in Rev. Mod. Phys. 84, 1527 (2012).
[23]
K. A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014).
[24]
N. Bohr. On the Constitution of Atoms and Molecules. (Part-1) Philos. Mag. 26, 1913, p 1.
[25]
U. V. S. Seshavatharam and S. Lakshminarayana. Calculating the energy of electron in H-atom using modified SUSY physics Journal of Nuclear Physics, Material Sciences, Radiation and Applications Vol. 2, No. 2 pp. 1–13. (2014).
[26]
U. V. S. Seshavatharam, and S. Lakshminarayana, “Critical Review on Cosmologically Strengthening Hydrogen Atom.” Frontiers of Astronomy, Astrophysics and Cosmology, vol. 1, no. 1 (2015): 37-42. doi: 10.12691/faac-1-1-5.
[27]
Geiger H and Marsden E. On a diffuse reaction of the particles. Proc. Roy. Soc., Ser. A 82: 495-500, (1909).
[28]
Michael O. Distler et al. The RMS Charge Radius of the Proton and Zemach Moments. Phys. Lett.B. 696: 343-347, (2011).
[29]
U. V. S. Seshavatharam and S. Lakshminarayana. Super Symmetry in Strong and Weak interactions. Int. J. Mod. Phys. E, Vol.19, No.2, p.263-280. (2010).
[30]
Chowdhury, P.R. et al. Modified Bethe-Weizsacker mass formula with isotonic shift and new driplines. Mod. Phys. Lett. A20 p.1605-1618. (2005).
[31]
W. D. Myers and W. J. Swiatecki. Table of Nuclear Masses according to the 1994 Thomas-Fermi Model. LBL-36803. (1994).
[32]
U. V. S. Seshavatharam, Lakshminarayana S. Understanding Nuclear Stability, Binding Energy and Magic Numbers with Fermi Gas Model. Journal of Applied Physical Science International. 4 (2) pp.51-59 (2015).
[33]
A. L. Fetter and J. D. Walecka, ‘Quantum Theory of Many-Particle Systems’, McGraw Hill, New York (1971). (especially, 348p ~ 352p).
[34]
B. D. Serot and J. D. Walecka, ‘Advances in Nuclear Physics’, edited by J. W. Negele and E. Vogt (Plenum, New York, 1986), Vol. 16.
[35]
J. A. Maruhn et al., Simple Models of Many-Fermion Systems. Springer-Verlag Berlin Heidelberg. Chapter 2, pp 45-70. (2010).
[36]
M. Bhuyan and S. K. Patra. A pilgrimage through super heavy valley. PRAMANA Vol. 82, No. pp. 851–858. (2014).
[37]
J. Fridmann et al. Magic nucleus 42Si. Nature 435, 922-924 (16 June 2005).
[38]
D. Steppenbeck et al. Evidence for a new nuclear 'magic number' from the level structure of 54Ca. Nature, DOI: 10.1038/nature12522. (2013).
[39]
Neha Sharma et al. Empirical evidence for magic numbers of super deformed shapes. Phys. Rev. C 87 024322 (2013).
[40]
M. Rosenbusch et al. Probing the N=32 Shell Closure below the Magic Proton Number Z=20: Mass Measurements of the Exotic Isotopes K52, 53. Phys. Rev. Lett. 114, 202501 (2015).
[41]
Olmsted III, John and Gregory M William. Chemistry Fourth Edition. John Wiley and Sons Inc: NJ, (2006).
[42]
Petrucci, Ralph H., William S. Harwood, F. Geoffrey Herring, Jeffry D Madura. General Chemistry. Pearson Education Inc: NJ, (2007).
[43]
Talmadge, C., Berthias, J. P., Hellings, R. W., Standish, E. M.: Model-independent constraints on possible modifications of Newtonian gravity. Phys. Rev. Lett. 61, 1159 (1988).
[44]
G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli and G. M. Tino1. Precision measurement of the Newtonian gravitational constant using cold atoms. Nature 510, 518-521. (2014).
[45]
L. L. Williams. Analytical Expressions for the Gravitational Constant. (August 2009) http://www.konfluence.org/CalculatingG.pdf.
[46]
George T Gillies. The Newtonian gravitational constant: recent measurements and related studies. Rep. Prog. Phys. 60, 151 (1997).
[47]
J Stuhler et al. MAGIA—using atom interferometry to determine the Newtonian gravitational constant. J. Opt. B: Quantum Semiclass. Opt. 5 (2003) S75–S81.
[48]
Terry Quinn, Harold Parks, Clive Speake and Richard Davis. An uncertain big G. Phys. Rev. Lett. 112.068103. (2013).
[49]
J. B. Fixler; G. T. Foster; J. M. McGuirk; M. A. Kasevich. Atom Interferometer Measurement of the Newtonian Constant of Gravity, Science 315 (5808): 74-77, (2007).
[50]
Jun Luo and Zhong-Kun Hu. Status of measurement of the Newtonian gravitational constant G. Class. Quantum Grav. 17 (2000) 2351–2363.